

AFRL-IF-RS-TR-2002-208
Final Technical Report
August 2002

TASKABLE REACTIVE AGENT COMMUNITIES

SRI International

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. J380

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2002-208 has been reviewed and is approved for publication

APPROVED:

 FOR THE DIRECTOR:
 JAMES A COLLINS
 Acting Technical Advisor
 Information Technology Division
 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
Aug 02

3. REPORT TYPE AND DATES COVERED
Final May 98 – Jan 02

4. TITLE AND SUBTITLE

TASKABLE REACTIVE AGENT COMMUNITIES

6. AUTHOR(S)

Karen L. Myers, David L. Martin and David N. Morley

5. FUNDING NUMBERS
C - F30602-98-C-0160
PE - 63760E
PR - AGEN
TA - T0
WU - 07

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SRI International
333 Ravenswood Ave
Menlo Park, CA 94025

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 525 Brooks Rd
Arlington, VA 22203-1714 Rome, NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2002-208

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Nancy Koziarz, IFTB, 315-330-2828, koziarzn@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The focus of Taskable Reactive Agent Communities (TRAC) project was to develop mixed-initiative technology to
enable humans to supervise and manage teams of agents as they perform tasks in dynamic environments. TRAC
technology would enable users to task agent communities in a high-level language that provides both descriptions of
goals to be satisfied and boundaries on agent behavior. The TRAC approach can be viewed as providing a form of
high-level process management technology that enables flexible human control of agent communities. In particular, the
TRAC framework is intended to support applications where processes are distributed and automatable, but where
human guidance can improve performance and increase flexibility. The technical work for the project focused on
identifying useful categories of guidance for directing agents, designing languages for expressing guidance, and
developing techniques for operationalizing guidance into constraints that influence agent behavior. Because users may
provide incompatible or unsatisfiable guidance to agents, the work also encompassed techniques for detecting and
resolving conflicting guidance. The TRAC implementation was used as the basis for a demonstration system called
TIGER (TRAC Intelligence Gathering and Emergency Response), which focused on the problem of multiagent
intelligence gathering in the wake of a simulated natural disaster. Within TIGER, a human supervisor can delegate
tasks to agents while providing guidance to control their runtime behavior.

15. NUMBER OF PAGES
56

14. SUBJECT TERMS

agent teams, conflict guidance, and mixed-initiative 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

Contents

1 Introduction 1

1.1 Background 1

1.2 Project Evolution .. 1

1.3 Agent Directability: Technical Approach 2

1.4 Summary of Accomplishments .. 2

1.5 Report Overview .. 3

2 Agent Directability 4

2.1 Agent Operations Model 4

2.2 Agent Guidance . .. 5

2.3 Representation of Guidance 6

2.4 Basic Model for Guidance Semantics and Enforcement 8

3 Guidance Interface Tools 10

4 Guidance Conflicts 11

4.1 Types of Guidance Conflict 11

4.2 Conflict Resolution Techniques .. 12

5 Technology Integration Experiments 14

5.1 NEO TIEs 14

5.2 MIATA TIE . 19

6 Conclusions 24

7 Bibliography 25

Appendix 27

A Selected Publications 27

A.1 Policy-based Agent Directability .. 28

A.2 Resolving Conflicts in Agent Guidance 45

i

1 Introduction

1.1 Background

Agent technology provides great promise for increasing levels of automation in complex dis-
tributed applications. One significant impediment to the acceptability of this technology, however,
has been concern that increased automation necessarily translates into reduced flexibility and loss
of human control.

The agents research community has, for the most part, focused on the mechanics of building
autonomous agents and techniques for communication and coordination among agents. In contrast,
little attention has been paid to supporting human interactions with agents. Most agent frameworks
lie at the extremes of the interaction spectrum, either assuming full automation by the agents
with no means for user involvement, or requiring human intervention at each step along the way
(i.e., teleoperation mode). Recently, however, there has been increased interest in agent systems
designed specifically to support interaction with humans (e.g., [2, 3, 6, 23]).

The focus of SRI International’s Taskable Reactive Agent Communities (TRAC) project was
to develop mixed-initiative technology to enable humans to supervise and manage teams of agents
as they perform tasks in dynamic environments. TRAC technology would enable users to task
agent communities in a high-level language that provides both descriptions of goals to be satisfied
and boundaries on agent behavior. During execution, the human would manage agent activities in
accord with a level of involvement that best suits his or her individual needs.

The TRAC approach can be viewed as providing a form of high-level process management
technology that enables flexible human control of agent communities. In particular, the TRAC
framework is intended to support applications where processes are distributed and automatable,
but where human guidance can improve performance and increase flexibility. In doing so, TRAC
should yield more effective and adaptive problem solving than is supported by current agent sys-
tems, while producing solutions that better match the preferences of users.

1.2 Project Evolution

Our original formulation of the project encompassed two complementary lines of research. One
involved the design of a policy-based approach for formulating guidance to direct the operations of
agents. The second involved the design of new delegation techniques and organizational strategies
for agent communities that would enable more effective use of agent resources. Our work in this
second area was expected to leverage the Open Agent Architecture (OAA), a facilitator-based agent
framework that supports rapid development of agent systems.

In support of the overall objectives of the Control of Agent-Based Systems (CoABS) program,
we spent most of our resources within the first two years of the project engaged in three Tech-
nology Integration Experiments (TIEs). The OAA system was used extensively within these TIEs
to provide critical integration capabilities for a range of CoABS technologies, thus providing a
valuable service to the program. In addition, we contributed numerous agents for use within the
TIEs that provided capabilities such as speech and language understanding, multimodal mapping,

1

video display, and information retrieval. This work, however, limited the technical advances that
we were able to make relative to our original project goals.

After completion of the three TIEs, we were directed by program management to focus on
policy-based agent directability as our primary research objective. For this final technical report,
we emphasize our research results in this area, which were developed primarily during the last 20
months of the project. Section 5 provides brief descriptions of the TIE work from the first two
years of the project (along with our work on a fourth TIE during the second half of the project).

1.3 Agent Directability: Technical Approach

Our technical approach for agent directability is grounded in the notion ofpolicies that express
general and task-specific recommendations for agents as they execute assigned tasks. The project
emphasized three types of policy: (a) strategy preferences that describe approaches to be used in
executing assigned tasks, (b) adjustability of agent autonomy, and (c) customizable reporting of
agent progress.

The technical work for the project focused on identifying useful categories of guidance for
directing agents, designing languages for expressing guidance, and developing techniques for op-
erationalizing guidance into constraints that influence agent behavior. Because users may provide
incompatible or unsatisfiable guidance to agents, the work also encompassed techniques for de-
tecting and resolving conflicting guidance. Issues related to user interface design, while important,
were not a major thrust.

The project produced a prototype TRAC system built on SRI’s Procedural Reasoning System
(PRS) [8]. PRS provides a core agent capability grounded in a Belief-Desire-Intention model
of agency [22]. The PRS technology is general-purpose and powerful, having been used in ap-
plications that include real-time fault diagnosis for the space shuttle, mobile robot control, and
management of communications networks.

The TRAC implementation was used as the basis for a demonstration system called TIGER
(TRAC Intelligence Gathering and Emergency Response), which focused on the problem of mul-
tiagent intelligence gathering in the wake of a simulated natural disaster. Within TIGER, a human
supervisor can delegate tasks to agents while providing guidance to control their runtime behavior.
TIGER served as a testbed for exploring our ideas on agent directability, as well as providing a key
component of the CoABS MIATA TIE (Section 5).

1.4 Summary of Accomplishments

The main technical accomplishments for the project are listed below, along with references to those
sections of the report that provide further detail.

� The definition of a policy framework for agent directability, focused on the complementary
notions of strategy preference, adjustable autonomy, and customizable reporting (Section 2).

2

� The development of a framework for detecting and resolving conflicts related to user guid-
ance for agents (Section 4).

� The implementation and documentation of a prototype TRAC system that supports our pol-
icy and conflict resolution methods [12], along with the development of the TIGER system
that showcases TRAC within a multiagent intelligence-gathering domain (Section 5.2.2).

� Participation in four Technology Integration Experiments (TIEs) (Section 5).

� Several papers and reports describing our technical accomplishments on the project [12, 15,
16, 17, 18, 19] (Appendix A).

1.5 Report Overview

The main body of this report contains a high-level summary of the key technical contributions of
the TRAC project. The appendix includes a selection of publications that provide more detailed
technical information.

Section 2 describes our model of agent guidance. Section 3 describes two implemented tools
designed to help users specify and apply agent guidance. Section 4 describes our work on detecting
and resolving conflicts with agent guidance. Section 5 summarizes our involvement with CoABS
TIEs. Section 6 presents our final conclusions and describes areas for future work.

3

2 Agent Directability

This section provides a high-level overview of our approach to agent directability. Additional
technical details can be found in [16, 18].

We begin with a description of our underlying model ofagency (Section 2.1), followed by
a summary of our different categories of agent guidance (Section 2.2), an overview of the formal
language used to express agent guidance (Section 2.3), and the semantics for the guidance language
along with corresponding enforcement techniques (Section 2.4).

2.1 Agent Operations Model

We adopt a typical Belief-Desire-Intention (BDI) model of agency in the style of [22] (as embodied
within SRI’s Procedural Reasoning System (PRS) [8]). BDI agents are so-called due to the three
components of their “mental state”:beliefs that the agent has about the state of the world,desires to
be achieved, andintentions corresponding to plans of action that the agent has adopted to achieve
its desires.

A set of plans defines the range of activities that an agent can perform to respond to events
or to achieve assigned tasks; our plan model is based on the Act representation [25]. Plans are
parameterized templates of activities that may require variable instantiations to apply to a particular
situation. Thecue of a plan defines the reason for invoking a plan. A plan may be activated to
respond to either a new goal (originating with the agent itself, another agent, or a human supervisor)
or to a change in the agent’s beliefs about the world.Preconditions associated with plans define
gating constraints that must be satisfied in order for a plan to be applied. A plan is said to be
applicable to an event (e.g., new goal or belief change) when the plan cue matches the stimulus,
and the plan preconditions are satisfied in the current world state. Plans can be decomposed into
other plans (thus providing a hierarchical model of activity), or can specify actions that agents can
execute directly.

An agent’s plan library will generally contain a range of plans describing alternative responses
to new events. Sets of these plans may beoperationally equivalent (i.e., they share the same cue
and preconditions) but differ in the approach that they embody. To select among these alternatives,
an agent may have some form of meta-control policy, including user guidance.

A BDI executor runs a continuoussense-decide-act loop to respond to changes in its operating
environment. At the start of each cycle, the executor collects all new goals and changed beliefs.
Next, it determines whether there are any plans in its library that are applicable to these events.
From this set, it selects some subset for execution and creates intentions for them. Finally, the
executor performs some bounded number of steps for each current intention.

Within this framework, agents make three main classes of decision:

D1 whether to respond to new goals and events

D2 how to select among multiple applicable plans

D3 how to select instantiations for plan variables

4

2.2 Agent Guidance

Our directability framework assumes that agents are capable of fully autonomous operation. More
concretely, an agent’s plan library covers the range of activities required to perform its assigned
tasks. This assumption means that agents do not depend on the human supervisor to provide
knowledge for task execution. Within this setting, guidance provides customization of agent be-
havior to suit the preferences of the human supervisor. In many applications, such guidance will
enable superior performance, given that few plan libraries will reflect the full experience, breadth
of knowledge, and reasoning capabilities that a human supervisor can bring to the decision-making
process.

Our model of agent directability focuses on general and task-specific policies to influence the
activities undertaken by agents in their execution of assigned tasks. In particular, we emphasize
the areas of (a) adjustable levels of agent autonomy, and (b) strategy preferences that describe
approaches to be used by an individual agent in executing assigned tasks.

Successful delegation further requires human visibility into agent activities. For this reason,
our framework includes methods forcustomizable reporting, which allow agents to adjust the fre-
quency and detail of information that they transmit regarding their status and progress on assigned
tasks.

2.2.1 Adjustable Autonomy

We define the autonomy of an agent to be the extent to which it is allowed to make decisions
(specifically, D1 – D3 from Section 2.1) on its own. In situations where activities are routine and
decisions straightforward, a human may be content to delegate all problem-solving responsibility
to an agent. However, in situations where missteps could have severe consequences, the degree of
autonomy of an individual agent should necessarily be controllable by a human.

We are interested in domains where agents will generally need to operate with high degrees
of autonomy. For this reason, we assume apermissive environment: unless stated otherwise,
agents are allowed to operate independent of human interaction. Our approach allows the human
to adjust the scope of operations that can be undertaken by an agent on its own terms, focusing
on the notions ofpermission requirements for action execution andconsultation requirements for
decision making.

Permission Requirements Permission requirements declare conditions under which an agent
must elicit authorization from the human supervisor before executing actions. For example, the
directive “Obtain permission before abandoning survey tasks with Priority > 3” imposes the con-
straint that an agent request approval from the supervisor to abandon a certain class of tasks.

Consultation Requirements Consultation requirements designate a class of agent decisions that
should be deferred to the human supervisor. These decisions can relate to either the selection of a

5

value for variable instantiation (e.g., “Consult when selecting locations for staging bases”) or the
selection of a plan for a goal (e.g., “Consult when choosing a response to a failed survey task”).

Our model of permission and consultation requirements, like earlier work on authority mod-
els, provides the means to block performance of certain actions by an agent. However, authority
models are generally static (e.g., thelevels of autonomy in [2]) and often derived from organiza-
tional structures. In contrast, our approach provides a rich language for expressing permission and
consultation policies, which can vary throughout a problem-solving session.

2.2.2 Strategy Preference

Strategy preferences express recommendations on how an agent should accomplish tasks. These
preferences could indicate specific plans to employ or restrictions on plans that should not be
employed, as well as constraints on how plan variables can be instantiated. Thus, for instance,
political or resource allocation decisions made at a higher level of command may make certain
strategies preferable; alternatively, a given commander may have favored approaches for accom-
plishing different types of task.

For example, a human directing a collection of intelligence-gathering agents might declare the
following sorts of strategy preferences. The directive “Try contacting Nongovernmental Organiza-
tions for information before sending vehicles to towns on the west coast” expresses a preference
for selecting among operationally equivalent plans. The directive “Only use helicopters for survey
tasks in sectors that are expected to be inaccessible by truck for more than 1 week” restricts the
choice of resource type for instantiating certain plan variables.

2.2.3 Customizable Reporting

The degree of visibility required by a human supervisor into the activity of a particular agent will
necessarily vary according to circumstances. For example, during the initial stages of disaster re-
lief effort, periodic detailed reports may be desired to provide a clear overall picture of operations.
As crises arise, immediate reports on the status of certain activities may become essential; in addi-
tion, detailed status reports could be replaced by high-level summaries since the human supervisor
already has a good understanding of the lay of the land.

Our model ofcustomizable reporting enables a user to tailor the amount and type of information
produced by agents to his or her evolving needs. We define different classes of reporting methods
that can be activated by the human as appropriate. Dimensions of adjustability include the context
in which events should be reported, frequencies for periodic reports, and level of detail.

2.3 Representation of Guidance

The guidance language builds on three main constructs: the BDI model of agency (Section 2.1),
the underlyingagent domain theory that defines the core capabilities of an agent, and adomain
metatheory that highlights key semantic differences among elements in the domain theory. Details

6

on our language for representing agent guidance can be found in [18]; here, we provide a high-level
description.1

A standard domain theory for an agent consists of four types of basic element:individuals
corresponding to real or abstract objects in the domain,relations that describe characteristics of
the world,goals that an agent may adopt, andplans that describe available means for achieving
goals.

The domain metatheory provides an abstracted characterization of elements of the domain the-
ory that highlights key semantic differences. The role of the domain metatheory is to provide a
high-level language for describing activity that abstracts from the details of an agent’s internal rep-
resentations. As discussed in [14], such a metatheory can provide a powerful basis for supporting
user communication. The main concepts within our metatheory for agent guidance arefeatures
androles (similar in spirit to those of [13]) defined for agent plans and goals.

A plan feature designates an attribute of interest for a plan that distinguishes it from other plans
that could be applied to the same task. For example, among plans for route determination, there
may be one that isOPTIMAL butSLOW with a second that isHEURISTIC butFAST; each of these
attributes could be modeled as a feature. Although the two plans are operationally equivalent (i.e.,
same cue and preconditions), their intrinsic characteristics differ significantly. Features provide
the means to distinguish among such alternatives.

A plan role describes a capacity in which a domain object is used within a plan; it maps to an
individual variable within a plan. For instance, a route determination plan may contain variables
location.1 andlocation.2, with the former corresponding to theSTART and the latter the
DESTINATION. Roles provide a semantic basis for describing the use of individuals within plans
that abstracts from the details of specific variable names.

In analogous fashion, we can define features and roles for goals.

The value of the domain metatheory lies with its provision of a semantically motivated abstrac-
tion of the underlying planning domain. This abstraction builds on semantic linkage among domain
elements, specifically the sharing of roles and features among multiple plans and goals. A domain
metatheory would be developed in conjunction with the definition of the underlying domain the-
ory for an agent. As discussed in [14], a domain metatheory should be a natural by-product of a
principled approach to domain modeling.

Using a combination of the agent domain theory and the domain metatheory, a user can spec-
ify abstract classes of activities and goals, which are used as the basic building blocks for agent
guidance. For example, an agent’s involvement in survey tasks would be captured by indicating
that the agent is executing a plan with the featureSurvey (of which there could be many). The
activity of abandoning a task with priority greater than 5 could be characterized as a plan with the
featureABANDON and roleCURRENT-TASK such that the value bound to the variable corresponding
to CURRENT-TASK satisfies the constraint(> (TASK-PRIORITY CURRENT-TASK) 5).

Guidance is created by composing such abstract descriptions. Specifically, each piece of guid-
ance consists of

1The guidance representation language supports encoding of domain-independent strategy preference and ad-
justable autonomy directives. Customizable reporting is realized within a separate set of domain-specific protocols,
and is not discussed further in this report.

7

� An agent context that describes conditions on the Beliefs, Desires, and Intentions currently
held by an agent

� A recommendation that describes how the agent should respond when in a situation that
matches the specified context

Each type of guidance (e.g., strategy preference, permission requirement, consultation require-
ment) employs a different type of recommendation. For strategy preference guidance, the recom-
mendation constitutes a description of activities to be either preferred or avoided when in the desig-
nated context. For permission requirement guidance, the recommendation describes activities for
which the agent should seek approval from the human supervisor. For consultation requirements,
the recommendation describes decisions that an agent should pass along to the supervisor.

2.4 Basic Model for Guidance Semantics and Enforcement

Satisfaction of an individual guidance rule is defined relative to the choice of plan for responding
to a new goal or belief change event within a given BDI executor cycle. A guidance rule is deemed
relevant to the plan selection process for a given event iff theagent context matches the current
BDI state of the agent. In the event that a guidance rule is not relevant to a particular plan selection
decision, then the guidance is trivially satisfied. Otherwise, satisfaction is characterized as follows.
For a strategy preference rule, the selected plan must match the recommended activities. For a
permission requirement rule, either the selected plan does not match the permission-constrained
activity in the rule or the supervisor agrees to allow execution of the plan. For a consultation rule,
either the designated decision did not surface within the plan selection process or the selected plan
is consistent with the human supervisor’s decisions.2

From the perspective of a BDI executor, guidance serves as afilter on the plan instances that
an agent can execute. When a standard BDI agent attempts to find an instance of a plan from its
library to apply to an event, it determines a set of applicable plan instances based on the plan cues
and preconditions. The executor limits this set further by eliminating options that violate the above
notions of guidance satisfaction for the current set of guidance.

Enforcement of guidance is attained through a simple modification to the standard BDI inter-
preter loop at the point where a plan instance is selected in response to a posted event. First, the
agent’s BDI state is matched to the agent context of all currently defined guidance to determine
the relevant guidance for the current execution cycle. The relevant strategy preference rules are
then used to eliminate plan instances that do not match their recommended activities. The resul-
tant list is then traversed in order to find the first for which either the plan instance is not affected
by relevant permission or consultation requirement rules, or queries to the human supervisor elicit
any required execution permissions and decision values. The agent then applies the selected plan
instance to the current goal.

This filter-based semantic model presents a simple and intuitive approach for interpreting guid-
ance. However, the model has certain limitations. One interesting consequence of this model is

2The formal definitions for guidance satisfaction can be found in [18].

8

that a guidance rule that is notrelevant to the current decision cycle istrivially satisfied. As dis-
cussed further in Section 4.1.2, this semantics can lead to some unintuitive results. In addition, the
model does not provide an adequate solution to accommodate guidance that makes contradictory
recommendations. In particular, contradictory recommendations would lead to no plan being se-
lected for application to the current goal. Section 4 presents a more complex semantic model that
provides a solution to these two problems.

9

3 Guidance Interface Tools

The motivation for our work on agent directability is to enable users to direct and manage agents
in dynamic, unpredictable environments. The language presented in earlier sections provides a
highly expressive formalism in which to define agent guidance; however, the complexity of the
language could overwhelm a typical user. For this reason, we have developed tools to help users
define and manipulate agent guidance. Figure 1 presents two such tools from the TIGER system.

The first tool is aguidance authoring interface that walks the user through the process of
constructing a complex piece of guidance. To enable a simple specification process, the tool does
not support the full expressivity of the formal guidance language; however, it supports a broad
range of expressions, including the examples used within MIATA. An accompanyingguidance
library can be used to store authored guidance. Users can select guidance from the library, as
appropriate for a particular situation.

The second tool is apermissions window that enables users to activate and deactivate permis-
sion requirements for certain classes of action performed on certain types of task. In particular,
selections made through this interface are compiled into corresponding permission requirement
structures. While this interface limits the scope of permission requirements that can be expressed,
it provides a simple, accessible specification mechanism.

Figure 1: Guidance Authoring Tool(top) and Permissions Window(bottom)

10

4 Guidance Conflicts

User guidance provides a powerful mechanism for runtime customization of agent behavior. How-
ever, it also introduces the potential for problems in the event that the guidance recommends in-
consistent responses. Such conflicts cannot arise with adjustable autonomy guidance, but are a
significant issue for strategy preference guidance. Robustness of operations requires mechanisms
for detecting conflicts with strategy preference guidance and responding in a manner that does not
jeopardize agent stability.

This project addressed two main issues related to the topic of conflicting strategy preference
guidance for agents. First, we identified different types of conflict that can arise with strategy
preference guidance. Second, we defined automated techniques for resolving guidance-related
conflicts. Our approach combines the selective dropping of problematic pieces of guidance with a
proactive capability to eliminate the source of conflicts by modifying current agent activities.

Our work did not consider interactive techniques for conflict resolution. However, such tech-
niques would necessarily play an important role in a comprehensive conflict resolution system.

4.1 Types of Guidance Conflict

Guidance can lead to two types of conflict:plan selection andsituated guidance.

4.1.1 Plan Selection Conflict

A plan selection conflict occurs when multiple pieces of guidance make incompatible recommen-
dations for responding to a goal within a given cycle of the BDI executor. Conflicts of this type
can arise in different forms. Here, we distinguish betweendirect andindirect conflicts.

A direct conflict arises when guidance yields contradictory plan selection recommendations. At
the plan level, such conflicts can arise through explicitly contradictory directives (e.g., guidance
that reduces to the constraintsExecute plan P andDon’t execute plan P), or implicitly due to in-
place control policies (e.g., guidance that reduces to the constraintsExecute plan P andExecute
plan Q in the context of a control policy that allows only one response to any posted goal). Conflicts
can also arise at the level of variable bindings (e.g.,Instantiate role R to A andInstantiate role R
to B, whereA 6= B).

An indirect conflict among guidance occurs when there is no direct conflict, yet the plans rec-
ommended by the guidance cannot complete successfully because of interplan interactions. Such
a situation could arise due to future contention for resources, deadlock/livelock, or race conditions
(among others). The problem of indirect conflict arises for any multithreaded system, not just
systems in which guidance has been used to select activities.

Direct conflicts are easily detected, as they lead to incompatible recommendations for respond-
ing to a belief change or posted goal. In contrast, it is generally difficult (sometimes impossible)
to detecta priori the plan interference problems that underlie indirect conflicts. Because such in-
terference problems remain an open research area in the agents community, we did not consider
indirect conflicts within this project.

11

4.1.2 Situated Guidance Conflict

Our basic semantic model from Section 2.4 interprets guidance as a filter on the set of otherwise
applicable plan instances for a particular goal or event. For example, consider a situation in which
all TIGER vehicles are in use for various tasks, and that the human supervisor has asserted guidance
q indicating that“All medical emergencies should be handled immediately”. The relevant plans
for responding to such emergencies each require the availability of a vehicle to perform various
activities. Suppose an emergency event arises. Because all vehicles are in use, no immediate
response plans would be applicable to the event. According to the filtering semantic model for
guidance,q will have no effect in this situation. Had there been a vehicle available, however, an
emergency response of some form would have been initiated.

In this case, there is a clear expectation on the part of the human supervisor for the system
to respond to the emergency. Accommodation of this response requires a generalization of the
filter-based semantic model described in Section 2.4.

More generally, this type of conflict arises in situations where there is a planp that is relevant
for a current goalg but some preconditionC of p does not hold, making it inapplicable. The
unsatisfied condition may be blocked by a contradictory belief of the agent, or as a result of some
already executing activity. This type of situation can arise independent of the presence of guidance.
Our interest in such situations relates to cases where guidance would recommend the execution of
p but the violation ofC results in the guidance being ignored because the plan(s) that it would
recommend are not candidates for application.

From a more proactive perspective, the prior activity or state condition conflicts with the intent
of applying the guidance. For this reason, we call this phenomenon asituated guidance conflict, as
it depends on the consideration of guidance within a particular execution state of an agent. As with
plan selection conflicts, situated conflicts can be further categorized according to whether they are
direct or indirect.

4.2 Conflict Resolution Techniques

The basic semantic model for guidance interpretation (described in Section 2.4) rests on the no-
tion of filtering plan instances during the BDI decision cycle that violate current guidance. This
filter-based semantic model has the virtue of simplicity; however, it eliminates the applicability of
guidance in many interesting situations.

One problematic situation arises when guidance makes contradictory recommendations, as de-
scribed above for the case of plan selection conflicts (e.g.,“Execute plan P” and“Don’t execute
plan P”). Because the filter-based semantic model eliminates plans that violate current guidance,
such a situation would lead to the selection of no plan. As noted above, the filter-based semantics
also leads to trivial satisfaction of guidance in cases where a more proactive interpretation would
be preferred.

Satisfactory resolution of guidance conflicts requires a richer semantic model for guidance
satisfaction. Our solution builds on the definition of satisfaction of an individual piece of guidance,
as defined in [16, 18] (and described informally in Section 2.4 of this report). However, we adopt

12

a preference-based approach that seeks to maximize satisfaction of a set of guidance relative to
stated priorities. Furthermore, instead of reducing the set of plans that the agent considers (by
filtering plans that would violate guidance), we expand the set of plans to include certain options
that would otherwise be discarded as inapplicable in the current execution state.

The expansion is grounded in plans from the agent’s predefined plan library. A dynamic synthe-
sis process creates new plans from inapplicable plans that guidance might otherwise recommend
by adding actions that compensate for the violated applicability conditions. To provide focus, the
expansion process requires the satisfaction of prerequisites related toresolvability andcost-benefit
analysis.

Resolvability The unsatisfied applicability conditions of the guidance-recommended plan must
be resolvable. In particular, there must be identified methods that can be invoked to achieve the
unsatisfied conditions. We refer to such methods asresolution plans. Resource availability consti-
tutes one important class of potentially resolvable conditions; we focused on conditions related to
serially sharable resources within the project.

Resolution plans are a form of goal-invoked plan designed to achieve a designated condition
(e.g., the availability of a resource). Resolution plans may initiate actions to modify existing
activities as part of the process of attaining the designated condition; in doing so, they must ensure
that an agent is left in a stable state. Ensuring such stability can be a challenge in itself; we discuss
that issue further in [20].

Cost-Benefit Analysis The benefits in following the prescribed guidance must outweigh the
costs associated with execution of the resolution plans. The value in modifying existing activi-
ties to enable activation of new guidance-recommended activities depends on a range of factors.
We developed a model grounded in the following criteria:

� Resolvability Cost: the cost inherent to executing any required resolution plans

� Task Priorities: the relative priorities of the resolution task and the current task

Different approaches can be considered for combining the above factors to determine the ap-
propriate response to a situated guidance conflict. Within the TIGER system, we defined a set of
fixed policies (e.g.,the priority of the new task is greater than that of the modified task).

Details on our conflict resolution strategies can be found in [20].

13

5 Technology Integration Experiments

Our project played significant roles in three Technology Integration Experiments (TIEs) during the
CoABS program:

� People Finder/Mover (NEO TIE 2)

� Air Mobility (NEO TIE 3)

� Mixed-Initiative Agent Team Administration (MIATA)

We also played a smaller role within theHelicopter Evacuation TIE (NEO TIE 1). Section 5.1
describes our involvement in the NEO TIEs, while Section 5.2 describes our work on MIATA.

5.1 NEO TIEs

From the beginning of the project through the end of 1999, the largest part of our work was in con-
nection with our central role in defining and implementing the NEO (Non-combatant Evacuation
Operation) TIEs (Technology Integration Experiments).

In September 1998, we attended the Challenge Problem Working Group meeting in Los Ange-
les, at which participants were asked to provide a list of individual technologies or “boxes” they
could contribute to TIE demonstrations in the NEO domain. The result of the meeting was that
participants organized themselves into three TIEs. As it turned out, SRI’s Open Agent Architecture
(OAA) was selected as a principal building block for two of the TIEs. TIE 2 chose OAA as the
primary agent infrastructure in which to bring together the various technology components, and
TIE 3 developed as a collaborative effort to show interoperability of OAA with CMU’s RETSINA
agent architecture [24].

In addition to providing and supporting the use of OAA as infrastructure for these TIEs, SRI
made major contributions to the development of scenarios and system design, and contributed and
evolved a number of individual components for both TIEs. In TIE 2, we collaborated closely with
ISI, CMU/Veloso, Object Consulting, and others; in TIE 3, with CMU/Sycara and BBN.

The following subsection provides a brief overview of OAA. Next, we describe the use of OAA
as infrastructure for both TIEs, and our work in supporting its use by others. Following that, we
discuss the components and other contributions made to TIEs 2 and 3 individually, and summarize
the major points demonstrated in these TIEs. In the final subsection of this section, we describe
our efforts in moving these two TIEs onto the CoABS Grid.

5.1.1 Overview of OAA

OAA is a framework for constructing agent-based systems that makes it possible for software ser-
vices to be provided through the cooperative efforts of distributed collections of autonomous agents
[10, 4]. Communication and cooperation between agents are brokered by one or morefacilitators,

14

which are responsible for matching requests, from users and agents, with descriptions of the ca-
pabilities of other agents. Thus, it is not generally required that a requester (user or agent) know
the identities, locations, or number of other agents involved in satisfying a request. Facilitators
are not viewed as centralized controllers, however, but rather ascoordinators, as they draw upon
knowledge from several different, potentially distributed, sources to guide their delegation choices.

OAA is structured so as to minimize the effort involved in creating new agents and ‘wrapping’
legacy applications, written in various languages and operating on various platforms; to encourage
the reuse of existing agents; and to allow for dynamism and flexibility in the makeup of agent
communities. Distinguishing features of OAA as compared with related work include extreme
flexibility in using facilitator-based delegation of complex goals, triggers, and data management
requests; agent-based provision of multimodal user interfaces; and built-in support for including
the user as a privileged member of the agent community.

OAA has to date been used as infrastructure for several dozen implemented systems, with
widely varying requirements and domains, combining more than 100 agents, written in seven pro-
gramming languages, on four different hardware platforms, as part of research and commercial
efforts within and outside of SRI.

5.1.2 Infrastructure and Support for TIEs

Because OAA was used in two of the three NEO TIEs, a large amount of effort went toward
supporting the participants who constructed components for these demonstrations. In addition to
providing the OAA Facilitator component, we supplied OAA libraries to participants for a number
of languages and platforms, and helped them with installation, development questions, and so forth.
Our Java, C/C++, and Lisp libraries got the most significant use in these TIEs, and were used on
both Unix and Windows platforms. This support began in late 1998 and continued throughout
1999.

Due to the strong interest by CoABS participants, we prepared a Web site with extensive doc-
umentation, a downloadable distribution of tools and libraries, a sample application, tutorial, and
community exchange pages (e.g., mailing lists, FAQs) for OAA version 1.0. The distribution in-
cluded new tools/agents for monitoring, debugging, profiling, and launching an agent community,
which are discussed below. Although this Web site and distribution were initially password pro-
tected, it subsequently has been made public and has attracted interest from a wide variety of
researchers in both government funded and commercially funded settings.

In addition to the ongoing TIE support activities described above, we made a substantial effort
to provide a new port of our OAA Lisp library, running in Allegro Common Lisp on the NT
platform. Also, in response to several suggestions and requests from TIE participants, we made
selected upgrades to the functionality of the OAA Facilitator and libraries. In connection with the
TIEs, the OAA Facilitator and libraries were successfully used by teams at Global Infotek, ISI,
CMU (two different teams), BBN, and Object Consulting (and were also employed in lesser roles,
in connection with TIE 1, at the University of Massachusetts and OGI). The feedback received
from these teams was very positive and very useful.

15

Tools Although OAA was not developed under CoABS funding, two important agent develop-
ment tools were: the Monitor agent and the Java version of Start-It. These tools were conceived
to support our TRAC framework, but also turned out to be useful to a number of the NEO TIE
participants, as well as to the developers of many OAA systems outside the scope of CoABS.

A key enabler of agent system development is the ability to inspect the state of individual
agents and to monitor the communication flow among the community participants. To this end, the
Monitor agent visualizes, logs, and constructs profiling information about multiagent interactions.

The Monitor agent turned out to be especially valuable in the context of remote testing (in-
volving agents running at two or more sites) of interoperability between selected groups of TIE
agents. Because the Monitor agent can remotely join an agent community at any time, and can
display information about all agents in the community, and interactions between them, it enabled
us to provide quick diagnoses of problems that arose in agents developed and running elsewhere.
The Monitor agent also served as a example in designing the Grid visualization capabilities.

Start-It is a runtime tool that manages the execution state of an agent community. Start-It
enables developers and other software agents to start, restart (if an agent unexpectedly terminates),
and shut down agents in the community. The Start-It agent provides base-level infrastructure
for experimenting with load balancing, resource discovery, and other approaches important for a
constructing a dynamic, adaptable community of software agents.

5.1.3 TIE 2

The primary focus of TIE 2 was on the ability of an agent system to dynamically respond to
changing information at runtime. The scenario and agent interactions were designed to explore the
kinds of agent and infrastructure characteristics needed to

� Acquire new information sources at runtime (e.g., from the Internet)

� Monitor changes in information sources

� Rapidly interact with humans, giving them the right amount of information to help them be
effective, in particular by displaying status changes and alerting humans to these changes

� Suggest appropriate responses

� Take commands from humans regarding actions to be carried out

In this TIE, we illustrated the following points:

� An agent-based paradigm provides a natural conceptual framework for designing and imple-
menting complex, distributed software systems, and can improve productivity in developing
such systems.

� Agents can monitor broad classes of information sources and dynamically identify relevant
events.

16

� Humans can be kept ‘in the loop’ by tailoring the interface’s abstraction level to avoid infor-
mation overload.

� Run-time coupling of heterogeneous components is feasible, and can increase the speed of
assembling a complex system and its quality.

� Use of an agent-based paradigm can support greater reuse of legacy systems, with less effort
than required by other paradigms.

� The use of facilitators in building complex, distributed software systems provides a useful
approach, for many classes of system, to coordinating the efforts of relatively autonomous
software components, which may not have been designed to work together.

� A multimodal, multimedia user interface provides a natural and easily acquired style of
interaction with complex, distributed software systems, without requiring a user to be aware
of the identities and activities of the individual software agents in the system.

TIE 2 Components For TIE 2, in addition to providing and supporting OAA as the framework
of interoperation, we provided the Multimodal Map system [11], a telephone contact agent, and
speech recognition and natural language understanding agents. Taken together, these agents, which
work closely together through OAA mechanisms, provide a compelling means by which the op-
erator can interact with the software components of the system. They allow the operator to give
commands and ask queries using speech alone, or in conjunction with gestures on a map display.

While each of these components is written in a domain-independent, reusable fashion, some
effort was required to customize them for the TIE (except for the phone agent, which required no
modifications). For instance, the speech and natural language agents’ grammars had to be extended
for the types of utterance used in the NEO domain. The most substantial new capabilities were
those given to the Multimodal Map system, which included facilities for displaying and updating
arbitrary routes on a map, and for analyzing the results of a database query to determine what
information is appropriate for the map display, and to aggregate the data in such a way as to avoid
an overly cluttered display.

Throughout the evolution of TIE 2, we made substantial contributions to scenario develop-
ment, to the specification of interactions between the TIE agents, and to the development of the
characterization of TIE 2 in terms of empirical hypotheses and experiments.

5.1.4 TIE 3

The primary focus of TIE 3 was an exploration of the challenges associated with establishing
interoperability between two different agent frameworks – OAA and RETSINA – each of which,
in turn, provides interoperability between multiple agents designed (or wrapped) to work within
that framework. This work was documented in the paper [21].

To achieve the objectives of this TIE, we collaboratively designed and implemented an OAA-
RETSINA “bridge” agent that enables arbitrary agents running in either framework to interoperate

17

with agents running in the other framework, with minimal development effort required to introduce
new agents. We also designed a scenario to illustrate the dynamic, adaptable aspects of agent
architectures. Most of the implementation work was done at CMU.

Some of the key observations resulting from this exploration were as follows:

1. Building an interframework bridge agent can be useful, for some pairs of agent frameworks:

� We found sufficient similarities between two independently developed frameworks to
allow for a reasonably straightforward mapping between the frameworks’ capabilities.

� The interoperator isolates, localizes, and modularizes the critical functionality of trans-
lating messages between frameworks.

2. Building an interframework bridge agent is nontrivial:

� Message translation involves semantic, not just syntactic, considerations.

� There is no simple way to build an interoperator that can operate without some prior
knowledge of the contents of each message type.

� Further investigation is needed to determine what is required to build an interoperator
without this prior knowledge.

� There is likely to be some loss of functionality between frameworks (e.g., matchmaking
based on argument types vs. based on unification).

3. Distributed development and testing of agent-based systems is feasible and productive, but a
more mature approach to ontological issues is a critical need:

� To minimize time spent in hand crafting solutions to ontological mismatches

� To minimize task-specific prior knowledge required in the interoperator

4. A few basic tools make a big difference in agent system development efforts, for example:

� Tracing mechanisms in key components (e.g., facilitators and matchmakers)

� Remote monitoring (e.g., OAA Monitor agent)

� Run-time environment for agent management (e.g., OAA Start-It)

� Visualization services (e.g., RETSINA DemoDisplay agent)

5. Agent-based software designs allow system builders to take advantage of redundancy for
system flexibility and robustness, by leveraging

� Multiple agents with identical or similar capabilities

� Multiple ways of entering requests

� Multiple ways of getting things done

18

TIE 3 Components In addition to OAA infrastructure, and the OAA-RETSINA bridge agent, we
contributed to TIE 3 our Multimodal Map system, weather and flight information retrieval agents,
the Maestro video display agent Cheyer:IUI:1998, and telephone, speech recognition, and natural
language understanding agents. The use of the Multimodal Map, phone, speech, and language
agents is similar to that described for TIE 2, above. The weather and flight information retrieval
agents answer queries about weather and airline schedules, by contacting publicly available Web
sites. The Maestro agent is used in this TIE to display videos on screen (although it has a much
broader range of capabilities).

Throughout the evolution of TIE 3, we made substantial contributions to scenario develop-
ment, to the specification of interactions between the TIE agents, and to the development of the
characterization of the TIE in terms of empirical hypotheses and experiments.

5.1.5 Moving the NEO TIEs onto the CoABS Grid

In the latter half of 1999, our NEO TIE efforts became focused on the need to adopt the CoABS
Grid as the primary interoperability framework (and, at the same time, to contribute to the fur-
ther evolution of the Grid). In collaboration with our TIE partners, we mapped out a plan for
migrating the NEO TIE components onto the Grid. Because individually rewrapping all TIE com-
ponents, as Grid components, was not feasible within given time constraints, we decided to pursue
a (more interesting) strategy in which the three NEO TIE frameworks in use (OAA, RETSINA,
and TEAMCORE) could continue to be employed, but could interoperate in limited ways through
Grid services. We were able to draw on our experience from TIE 3 in building the OAA-RETSINA
bridge agent.

Both the OAA Facilitator and the OAA-RETSINA bridge agent were retained in the Grid-
enabled instantiation of the NEO TIEs. To provide access to OAA agents from the Grid, we
designed and implemented a new Java-basedfacilitator proxy agent. The primary function of this
agent was to translate OAA capabilities descriptions, at runtime, into Grid capabilities descriptions,
and register them with the Grid registry component. In addition, we introduced the ability to log
every message between OAA agents, using the Grid logging service.

Concurrently, we were active participants in several Grid affinity groups – those dealing with
Middle Agents, Translation & Interoperation, and Ontology.

5.2 MIATA TIE

The objective of the MIATA TIE was to explore human/agent coordination issues for large-scale,
continuous Command and Control. Specifically, the MIATA TIE focused on coordinating humans
and agents from several military offices and nongovernmental organizations within a disaster relief
domain. MIATA was grounded in a specific disaster scenario, namely, the passage of Hurricane
Mitch through Honduras in 1998. The models underlying MIATA were drawn from actual histori-
cal data on the Hurricane Mitch relief effort.

The final demonstration system for MIATA showed users directing and interacting with agents
to

19

� Form teams

� Gather intelligence about damage on the ground from a simulation of the region as the hur-
ricane passes through

� Plan for the deployment of relief supplies and repair equipment

� Manage logistical resources and distribution of supplies

� React to problems on the ground

The TIE encompassed technologies from a wide range of contributors, including BBN Tech-
nologies, Carnegie Mellon University, the Kestrel Institute, the University of Rochester, the Uni-
versity of Oregon, SRI International, Yale, and OBJS. MIATA operates within a simulated testbed
called Maplesim (http://www.cs.cmu.edu/˜maple/).

5.2.1 Project Role within MIATA

Our role within the MIATA TIE was to demonstrate how agent directability technology could sim-
plify management of a large number of agents within the highly dynamic operating environment
of the disaster relief scenario. To this end, we developed a capability for intelligence gathering and
dissemination, roughly analogous to the role of a J2. The information management task provided
a good fit for demonstrating our technical ideas on human directability of agents, both because it
requires a combination of goal-directed and reactive behavior, and because it is an information-rich
task whose complexity is difficult for humans to manage on their own.

Our work for the MIATA TIE involved

� Formulating the specifics of the J2 role

� Working with the other TIE members to create a demonstration scenario

� Developing process descriptions for the J2 capability to manage simulated vehicles within
CMU’s Maplesim environment

� Implementing those process descriptions within PRS

� Integrating (both technically and conceptually) the J2 module with other MIATA compo-
nents

To match the conceptualization of the MIATA framework, we implemented the J2 function
in terms of a ‘J2 proxy agent’ that serves as an automated analog to the human J2. (There is a
corresponding proxy agent for every other major functional role within MIATA.) This proxy agent
accepts a variety of tasks related to the J2 function, and then manages the various agents under
its control to accomplish those tasks. In addition, the proxy agent manages the communication of
collected intelligence information to ‘clients’ that have requested it, or to other agents who need to
be aware of it (e.g., repair crews who could respond to damaged bridges).

20

5.2.2 The TIGER System

Our software module within MIATA is called TIGER (TRAC Intelligence Gathering and Emer-
gency Response). TIGER leverages a domain-independent implementation of our TRAC frame-
work for agent guidance on top of PRS. TIGER runs on both Sun Workstations with Solaris, and
PCs running Windows NT and 2000.

TIGER automates fully the processes required to fulfill the J2 function within the demonstra-
tion, and as such is capable of operating without human guidance. Our motivation, however, was to
show that human directability of an agent community such as that within TIGER yields improved
problem solving over agent systems where the human must either explicitly manage the agents
himself, or has no control over the agents as they perform their assigned tasks.

TIGER interacted with virtually every other module in the MIATA system. As such, we spent a
substantial amount of effort developing protocols and capabilities designed to fit the requirements
of the overall MIATA framework. However, we designed TIGER in such a way that it can operate
independently of all components in MIATA except the Maplesim simulator. This design enabled
us to continue exploring our ideas on agent directability within TIGER after the completion of
MIATA, independent of other MIATA participants.

TIGER Functionality TIGER provides the Intelligence Management component of adisaster
response team whose objective is to provide humanitarian relief in the wake of a natural disaster.
Other organizations within the team provide logistics (e.g., supplies distribution), operations (e.g.,
repair of infrastructure), and medical services. These organizations have their own physical assets
(trucks and aircraft) available for their use. As would be expected, these organizations need to share
information and resources to perform their functions effectively. A human commander oversees
operations, dynamically tasking organizations to implement the relief process.

The primary role for TIGER is to gather information in response to requests from the supervi-
sor or other members of the disaster response team. These requests can result in tasks to acquire
information on the current state of infrastructure (roads, bridges) in designated regions, or to col-
lect supply requirements (medical, food, water, shelter) of designated population centers within
impacted regions. There can also be requests to be informed of key events (such as medical emer-
gencies) as they become known. A secondary role is to respond to certain unexpected events
(e.g., participating in evacuations, assisting with medical emergencies). Thus, TIGER agents must
incorporate reactive capabilities that balance responsiveness with ongoing goal attainment.

The scope and complexity of the intelligence-gathering operations within the disaster relief
context preclude step-by-step management of agent operations by a human. However, effective
coordination of the available assets requires human supervision. As such, this domain provides an
excellent example of an application that will benefit from technology for agent directability.

Agent Community Organization Figure 2 displays the organization of agents within TIGER.

The system has at its disposal a collection of simulatedphysical agents (trucks and helicopters)
that can be used to gather information and respond to emergencies. This set may be changed by

21

MAPLESIM

Supervisor

controlled uncontrolled

Coordinator
Agent

TIGER Truck Agents
Heli Agents

Comms
Agent

Figure 2: TIGER Architecture

external forces. For example, the logistics proxy agent may request to borrow some number of
trucks to support delivery of critical supplies for a short period of time. Alternatively, when in-
undated with high-priority tasks that require immediate response, the J2 may request temporary
access to resources controlled by other proxy agents. In addition, there is a set of simulatedcom-
munications agents (e.g., other relief organizations, nongovernment organizations, local officials)
that can be consulted to obtain information. TIGER contains a separate controller for each of the
physical agents, as well as a communications manager for interacting with the various simulated
communications agents. We refer to these controller agents as thetask execution agents within
TIGER, because they instigate and manage the activities required to perform assigned tasks.

Thecoordinator agent serves as the ‘J2 proxy’ within TIGER. It provides global management
of tasks within the community, acting as a mediator between the human supervisor and the task
execution agents. It also manages interactions with members of the disaster response team who
request information (i.e., itsinformation clients).

The TIGER agents communicate with other MIATA agents using KQML messages over the
CoABS Grid, via the Grid proxy capability developed by BBN. Communications fall broadly into
three categories:

� Task execution agents send messages to Maplesim to initiate and control simulated vehicles;
they also receive status information from Maplesim corresponding to the percepts of the
simulated vehicles.

� Communications agents send messages to Maplesim requesting information on specified
topics from designated sources.

� The coordinator agent exchanges information with both human participants (e.g., human
J2, J3, J4, and the commander) and agents from other modules within the disaster response
team.3

3Figure 2 does not depict these additional MIATA modules.

22

Tasking Model Resource scheduling was not one of the aims of the TRAC project. For this
reason, we opted to implement a simple heuristic task allocation algorithm within TIGER.

The TIGER coordinator agent maintains both a pool of unassigned tasks and a pool of currently
unallocated agents. The coordinator agent matches a waiting task with an unallocated agent based
on properties of the task, the available agents, and current knowledge about the state of the roads
and bridges. Task properties includelocation, priority (an integer from 0 to 10),type (e.g., survey,
rescue), andstatus (e.g., pending, completed, failed). The agent properties includetype (e.g.,
helicopter or truck) andlocation.

Task management constitutes a major component of an execution agent’s decision-making pro-
cess. An execution agent must determine what to do if, while executing one task, the coordinator
agent passes it a second task. It must also decide when to drop tasks that are not progressing well
in favor of new tasks with higher potential for success.

For simplicity, we limit each task execution agent to at most one active task at any point in
time. Agents may also have pending tasks (which they intend to undertake) and preempted tasks
(which were begun but put aside for higher-priority tasks). Tasks are assigned to individual agents
and do not require coordination with other agents for their completion.

Unexpected events (e.g., a medical emergency) may require immediate response. Events are
characterized by the propertieslocation, time (of the event),severity (an integer 0 to 10),number of
people affected, andtype (e.g., evacuation, medical). The coordinator agent selects an appropriate
task execution agent to deal directly with each such event, thus bypassing the task pool.

These characteristics of tasking simplify the decision process for what an execution agent
should do when it receives a task request. The agent can choose among several combinations
of actions, includingignore the event,adopt a new task to respond to the event,abandon the cur-
rent active task,transfer the task to another agent, orpostpone the current task until the new task
is completed. The agent’s plan library includes options for each of these choices.

5.2.3 Contributions to MIATA

Within the final MIATA demonstration (January 2001), we showed how a human J2 can direct
and adjust the behavior of the agents under its control within TIGER. In particular, the human
J2 directed agents to interact with humans on decisions related to responding to certain types of
emergency events, told agents not to deviate from certain survey tasks to respond to noncriti-
cal evacuations, and required agents always to respond to medical crises above certain severity
thresholds. In this way, our agent directability technology enabled the human J2 to customize the
behavior of his agents to meet the unique requirements of the demonstration scenario.

TIGER also allowed each client agent (human or automated) to customize the level of detail
and timing of reports that it received. The client agent could request that reports on the status
and/or results of tasks be generated periodically, or when particular sorts of events occurred (such
as task execution problems or a medical emergency). This customized reporting provided a critical
service within MIATA, as it enabled information clients to receive precisely the type and amount
of information that they needed at any point in the scenario.

23

6 Conclusions

The TRAC framework for human directability of agents enables a user to define polices for ad-
justable agent autonomy and strategy preference. Using these mechanisms, a human supervisor
can customize the operation of agents to suit his individual preferences and the dynamics of unex-
pected situations. In this way, system reliability and user confidence can be increased substantially
over fully autonomous agent systems. The power of these ideas has been demonstrated within the
TIGER system, which supports a human intelligence officer in managing a community of agents
engaged in tasks for information gathering and emergency response.

Recognition of the need for technologies to support human-agent interactions has grown sub-
stantially in the past few years. However, few concrete technical approaches have been proposed to
enable agent directability. Our work on policy-based agent directability defines a new and promis-
ing direction for enabling human controllability of agents.

Many outstanding issues in this area remain to be addressed. We briefly describe three impor-
tant topics for future research.

Detecting and Resolving Guidance Conflicts Our conflict detection and resolution techniques
provide a solid foundation for solving the general problem of robust response to conflicting guid-
ance. However, much additional work is needed. First, techniques for dealing with indirect con-
flicts are required that reason about the downstream effects and requirements of plans. Second,
our prioritization scheme for resolving direct conflicts presents a simple approach to conflicting
guidance; it would be interesting to incorporate more advanced conflict resolution policies (e.g., in
the style of [5, 9]). Finally, mixed-initiative resolution techniques will necessarily be a part of any
effective conflict-handling facility.

Community Guidance The forms of agent directability considered in this project focus on in-
fluencing the behavior of an individual agent. Human supervisors will also want to express control
at thecommunity level, to encourage or discourage various forms of collective behaviors. The
guidance“Keep 2 trucks within 15 miles of headquarters” is an example. Enforcement of this type
of guidance will require mechanisms that support information exchange and coordinated action
selection among groups of agents.

Collaborative Control Our model of agent directability provides a form ofsupervised autonomy
[1] in which control over autonomy rests solely with the human supervisor. Some situations may
benefit from a more collaborative approach [7], where both sides share control over initiative. For
example, an agent may choose to initiate a dialogue with the human in situations where adherence
to guidance would interfere with the pursuit of current goals, rather than blindly following the
user’s recommendations.

24

7 Bibliography

References

[1] K. S. Barber and C. E. Martin. Agent autonomy: Specification, measurement, and dynamic
adjustment. InProceedings of the Autonomy Control Software Workshop at Autonomous
Agents, 1999.

[2] P. Bonasso. Issues in providing adjustable autonomy in the 3T architecture. InProceedings
of the AAAI Spring Symposium on Agents with Adjustable Autonomy, 1999.

[3] H. Chalupsky, Y. Gil, C. A. Knoblock, K. Lerman, J. Oh, D. Pynadath, T. A. Russ, and
M. Tambe. Electric Elves: Applying agent technology to support human organizations. In
Proceedings of the Thirteenth Conference on Innovative Applications of Artificial Intelli-
gence, 2001.

[4] A. J. Cheyer and D. L. Martin. The Open Agent Architecture.Journal of Autonomous Agents
and Multi-Agent Systems, 4:143–148, 2001.

[5] F. Dignum, D. Morley, E. A. Sonenberg, and L. Cavedon. Towards socially sophisticated
BDI agents. InProceedings of the Fourth International Conference on MultiAgent Systems
(ICMAS’2000), 2000.

[6] G. Ferguson and J. Allen. TRIPS: Towards a mixed-initiative planning assistant. InProceed-
ings of the AIPS Workshop on Interactive and Collaborative Planning, 1998.

[7] T. Fong, C. Thorpe, and C. Baur. Collaborative control: A robot-centric model for vehicle
transportation. InProceedings of the AAAI Spring Symposium on Agents with Adjustable
Autonomy, 1999.

[8] M. P. Georgeff and F. F. Ingrand. Decision-making in an embedded reasoning system. In
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, 1989.

[9] E. Lupu and M. Sloman. Conflicts in policy-based distributed systems.IEEE Transactions
on Software Engineering, Special Issue on Inconsistency Management, 25(6), 1999.

[10] D. L. Martin, A. J. Cheyer, and D. B. Moran. The Open Agent Architecture: A framework
for building distributed software systems.Applied Artificial Intelligence, 13:91–128, 1999.

[11] D. B. Moran, A. J. Cheyer, L. E. Julia, D. L. Martin, and S. Park. Multimodal user interfaces
in the Open Agent Architecture. InProceedings of the 1997 International Conference on
Intelligent User Interfaces (IUI97), Orlando, FL, 6-9 January 1997.

[12] D. N. Morley. User’s guide for the tiger system. Technical report, Artificial Intelligence
Center, SRI International, 2002.

25

[13] K. L. Myers. Strategic advice for hierarchical planners. In L. C. Aiello, J. Doyle, and S. C.
Shapiro, editors,Principles of Knowledge Representation and Reasoning: Proceedings of the
Fifth International Conference (KR ’96). Morgan Kaufmann Publishers, 1996.

[14] K. L. Myers. Domain metatheories: Enabling user-centric planning. InProceedings of the
AAAI-2000 Workshop on Representational Issues for Real-World Planning Systems, 2000.

[15] K. L. Myers and D. N. Morley. Directing agent communities: An initial framework. In
Proceedings of the IJCAI Workshop on Autonomy, Delegation, and Control: Interacting with
Autonomous Agents, 2001.

[16] K. L. Myers and D. N. Morley. Human directability of agents. InProceedings of the First
International Conference on Knowledge Capture, 2001.

[17] K. L. Myers and D. N. Morley. The TRAC framework for agent directability. Technical
report, Artificial Intelligence Center, SRI International, 2001.

[18] K. L. Myers and D. N. Morley. Policy-based agent directability. In H. Hexmoor, R. Falcone,
and C. Castelfranchi, editors,Agent Autonomy. Kluwer Academic Publishers, 2002.

[19] K. L. Myers and D. N. Morley. Resolving conflicts in agent guidance. InProceedings of the
AAAI-2002 Workshop on Preferences in AI and CP: Symbolic Approaches, 2002.

[20] K. L. Myers and D. N. Morley. Resolving conflicts in agent guidance. Technical report,
Artificial Intelligence Center, SRI International, Menlo Park, CA, 2002.

[21] J. G. M. Paolucci and K. Sycara. Agent interoperation across multiagent system boundaries.
In Proceedings of the Fourth International Conference on Autonomous Agents (Agents 2000),
New York, NY, June 2000. Association for Computing Machinery.

[22] A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. InProceedings of the
International Conference on Multi-Agent Systems (ICMAS-95), San Francisco, 1995.

[23] D. Schreckenghost, J. Malin, C. Thronesbery, G. Watts, and L. Fleming. Adjustable con-
trol autonomy for anomaly response in space-based life support systems. InProceedings of
the IJCAI Workshop on Autonomy, Delegation, and Control: Interacting with Autonomous
Agents, 2001.

[24] K. Sycara, K. Decker, A. Pannu, and M. Williamson. Designing behaviors for informa-
tion agents. InProceedings of the First International Conference on Autonomous Agents
(AGENTS-97), February 1997.

[25] D. E. Wilkins and K. L. Myers. A common knowledge representation for plan generation and
reactive execution.Journal of Logic and Computation, 5(6), 1995.

26

A Selected Publications

We produced the following technical papers and reports on the project; they are available at the
project websitewww.ai.sri.com/˜trac.

� Policy-based Agent Directability, K. L. Myers and D. N. Morley. InAgent Autonomy, edited
by H. Hexmoor, R. Falcone, and C. Castelfranchi, Kluwer Academic Publishers, 2002. †

� Resolving Conflicts in Agent Guidance, K. L. Myers and D. N. Morley. InProceedings of
the AAAI-2002 Workshop on Preferences in AI and CP: Symbolic Approaches”, Edmonton,
Alberta, 2002. †

� Human Directability of Agents, K. L. Myers and D. N. Morley. InProceedings of the First
International Conference on Knowledge Capture, Victoria, B.C., 2001.

� Directing Agent Communities: An Initial Framework, K. L. Myers and D. N. Morley. In
Proceedings of the IJCAI Workshop on Autonomy, Delegation, and Control: Interacting
with Autonomous Agents, Seattle, WA, 2001.

� User’s Guide for the TIGER System, D. N. Morley. Technical Report, AI Center, SRI Inter-
national, 2002.

To extend the technical summaries provided in the main body of this report, preliminary versions of
the documents marked by † above are included in this appendix. (Final versions will be completed
shortly for publication.)

A.1 (Page 28) Policy-based Agent Directability

A.2 (Page 45) Resolving Conflicts in Agent Guidance

27

Policy-based Agent Directability

Karen L. Myers, David N. Morley
Artificial Intelligence Center

SRI International
333 Ravenswood Ave.

Menlo Park, CA 94025
myers@ai.sri.com, morley@ai.sri.com

Abstract

Many potential applications for agent technology require humans and agents to work together in or-
der to achieve complex tasks effectively. In contrast, much of the work in the agents community to date
has focused on technologies for fully autonomous agent systems. This paper presents a framework for
the directability of agents, in which a human supervisor can define policies to influence agent activities at
execution time. The framework focuses on the concepts of adjustable autonomy for agents (i.e., varying
the degree to which agents make decisions without human intervention) and strategy preference (i.e.,
recommending how agents should accomplish assigned tasks). These mechanisms enable a human to
customize the operations of agents to suit individual preferences and the dynamics of unexpected situ-
ations, leading to improved system reliability and increased user confidence over fully automated agent
systems. The directability framework has been implemented within a PRS environment, and applied to
a multiagent intelligence-gathering domain.

1 Introduction

The technical and public press are filled these days with visions of a not-too-distant future in which humans
rely on software and hardware agents to assist with problem solving in environments both physical (e.g.,
smart offices, smart homes) and virtual (e.g., the Internet). The notion of delegation plays a central role in
these visions, with humans off-loading responsibilities to agents that can perform activities in their place.

Successful delegation requires more than the mere assignment of tasks. A good manager generally
provides directions to a subordinate so that tasks are performed to his or her liking. To ensure effectiveness,
the manager will monitor the progress of the subordinates, occasionally interrupting to provide advice or to
resolve problems.

The agents research community has, for the most part, focused on the mechanics of building autonomous
agents and techniques for communication and coordination among agents. In contrast, little attention has
been paid to supporting human interactions with agents of the type required for extended problem-solving
sessions. Most agent frameworks lie at the extremes of the interaction spectrum, either assuming full au-
tomation by the agents with no means for user involvement, or requiring human intervention at each step
along the way (i.e., teleoperation mode). Recently, however, there has been increased interest in agent
systems designed specifically to support interaction with humans (e.g., [2, 3, 5, 14]).

This paper describes a framework, called Taskable Reactive Agent Communities (TRAC), that supports
directability of a team of agents by a human supervisor. Within TRAC, the human assigns tasks to agents

28

along with guidance that imposes boundaries on agent behavior. By adding, deleting, or modifying guidance
at execution time, the human can manage agent activity at a level of involvement that suits his or her needs.
In essence, our approach can be viewed as form of process management technology that enables flexible
human control of agent communities.

A key issue in developing technology to support agent directability is determining the types of guidance
to be provided. This paper focuses on guidance for adjustable agent autonomy and strategy preferences.
Guidance for adjustable autonomy enables a supervisor to vary the degree to which agents can make deci-
sions without human intervention. Guidance for strategy preferences constitutes recommendations on how
agents should accomplish assigned tasks. Effective delegation and management by a human supervisor also
requires visibility into ongoing agent operations. Although not described in this paper, the TRAC frame-
work includes a capability for customizable reporting that enables a supervisor to tailor the amount, type,
and frequency of information produced by agents to meet his evolving needs. Details can be found in [11].

The main contributions of this paper are the characterization of guidance for adjustable autonomy and
strategy preference, presentation of a formal language for representing such guidance, the description of a
semantic model for satisfaction of such guidance by an agent, and techniques for enforcing such guidance
during agent operation.

The paper begins with a description of our underlying model for agents (Section 2). From there, we
present an informal characterization of guidance for adjustable autonomy and strategy preferences (Sec-
tion 3). Next, we describe a multiagent system, called TIGER, which instantiates the TRAC approach to
directability for the application of multiagent intelligence gathering in the wake of a simulated natural disas-
ter (Section 4). We use TIGER to provide examples of the directability concepts throughout this document.
Following this description, we present our formal representation for guidance (Section 5) and a semantic
model for guidance satisfaction (Section 6). Section 7 presents our techniques for guidance enforcement
while Section 8 describes interface tools that support guidance specification. The paper concludes with a
discussion of related work (Section 9).

2 Agent Model

We adopt a typical Belief-Desire-Intention (BDI) model of agency in the style of [12]. BDI agents are so-
called due to the three components of their “mental state”: beliefs that the agent has about the state of the
world, desires to be achieved, and intentions corresponding to plans of action that the agent has adopted to
achieve its desires.

2.1 Agent Components

An agent represents the domain using a standard first-order language; well-formed formulae (wffs) are con-
structed from variables, quantifiers, connectives, and domain-specific predicate, function, and constant sym-
bols.

The beliefs of an agent are represented by a set, Bel, of ground atomic facts. Given a set of beliefs,
we define the truth of a wff φ (denoted by Bel j= φ) as follows. A ground atomic fact, φ, is interpreted as
true with respect to Bel iff φ2 Bel and false otherwise (i.e., the Closed World Assumption). The truth of a
compound formula is derived from the truth of its constituents in the standard way.

The desires of an agent are represented by goals that denote conditions to be achieved. Syntactically,
goals are constructed from goal name symbols and terms. As the BDI executor achieves a goal, it may bind

29

variables in the goal, effectively returning values that result from goal achievement. Agents manipulate their
world by performing actions. Syntactically, actions are constructed from action name symbols and ground
terms.

Each agent has a library of plans that describe alternative ways of achieving a goal or of responding
to a change in the belief state; our plan model is based on the Act representation language [15]. Plans
are parameterized templates of activities that may require variable instantiations to apply to a particular
situation. Each plan has a precondition, consisting of a wff stating conditions under which the plan can be
used. The cue of a plan specifies a stimulus that activates the plan: fact-invoked plans have a wff for the cue
and are triggered by the agent’s beliefs changing to make that wff true; goal-invoked plans have a goal for
the cue and are triggered by the posting of a unifying goal expression. The body of a plan specifies how to
respond to the stimulus as a directed graph of actions to perform and subgoals to achieve.

An agent’s plan library will generally contain a range of plans describing alternative responses to posted
goals or events. Sets of these plans may be operationally equivalent, in that they share the same cue and
preconditions but differ in the approach that they embody. To select among these alternatives, an agent may
have some form of meta-control policy, such as user guidance.

A plan instance is a copy of a plan in the library with some substitution of terms for variables in the
plan. A plan instance represents a possible way of responding to a triggering event. The relevant plans for
an event (belief change or posted goal) are the plans in the library whose cue unifies with the event. The
applicable plan instances for an event consist of instances of the relevant plans created by applying variable
substitutions that unify the cue with the event, and cause the precondition to be true with respect to the
agent’s beliefs.

2.2 Agent Execution

The role of the BDI executor is to select plan instances to execute in response to changes in its beliefs and
goals. An intended plan consists of a plan instance that the agent has decided to execute, together with
information about the progress of that execution: the node in the body that is currently being executed and
additional variable bindings that have been introduced through the execution. Intended plans exist as part
of an intention, a hierarchical structure corresponding to an execution thread. The root of each intention
consists of an intended plan that resulted from a belief change or from a goal supplied by the user. Down the
intention hierarchy, the cue of each intended plan matches a goal in the intended plan above it. The intention
set, Int, of a BDI agent is the set of all intentions that the agent is executing.

A BDI executor runs a continuous sense-decide-act loop. At the beginning of each cycle, the executor
updates the agent’s beliefs based on sensor information, and posts a belief change event for each change.
Additionally, the executor posts a goal event for each new goal given to it by the user.

The executor then selects an intention and identifies the current node to be considered (either a goal or
an action) in the body of the lowest-level intended plan of that intention. If the current node is an action,
the action is attempted and any variable bindings that result from the successful execution of the action are
applied to the intended plans of the selected intention. Otherwise, the current node is a goal and the agent
posts a corresponding goal event.

For each posted event, the executor collects the applicable plan instances and selects one to be intended
(i.e., for a goal posted from an intention, added to that intention; for other goals, creates a new intention).
When the last goal or action of an intended plan body completes successfully, the intended plan is dropped
from the intention, and any goal that triggered it is deemed completed.

30

The selection of an applicable plan instance to intend for an event is based on the BDI executor state
that contains the mental state of the agent (i.e., the beliefs, desires, and intentions) along with the selected
event. In this document, we focus on plan instance selection for a goal event, gcur, posted from an existing
intention (for simplicity). Plan instance selection for belief change events and user specified goal events can
be treated similarly. We denote a BDI executor state by the tuple S = hBel;Des; Int;gcuri.

Within this model of BDI execution, agents make four classes of decisions:

D1 whether to respond to new goals and events

D2 how to select among multiple applicable plans when expanding a goal

D3 how to select instantiations for plan variables.

D4 which intention to consider

3 TRAC Framework for Agent Directability

Our directability framework assumes that agents are capable of fully autonomous operation. More con-
cretely, an agent’s plan library covers the range of activities required to perform its assigned tasks. This
assumption means that agents do not depend on the human supervisor to provide knowledge for task ex-
ecution. Within this setting, guidance provides customization of agent behavior to suit the preferences of
the human supervisor. In many applications, such guidance will enable superior performance, given that
few plan libraries will reflect the full the experience, breadth of knowledge, and reasoning capabilities that
a human supervisor can bring to the decision-making process.

Our model of agent directability focuses on general and task-specific policies to influence the activities
undertaken by agents in their execution of assigned tasks. In particular, we emphasize the areas of (a)
adjustable levels of agent autonomy and (b) strategy preferences that describe approaches to be used by an
individual agent in executing assigned tasks.

3.1 Adjustable Autonomy

We define the autonomy of an agent to be the extent to which it is allowed to make decisions (specifically,
D1 – D3) on its own. In situations where activities are routine and decisions straightforward, a human
may be content to delegate all problem-solving responsibility to an agent. However, in situations where
missteps could have severe consequences, the degree of autonomy of an individual agent should necessarily
be controllable by a human.

We are interested in domains where agents will generally need to operate with high degrees of autonomy.
For this reason, we assume a permissive environment: unless stated otherwise, agents are allowed to operate
independent of human interaction. Our approach allows the human to adjust the scope of operations that can
be undertaken by an agent on its own terms, focusing on the notions of permission requirements for action
execution and consultation requirements for decision making.

Permission Requirements Permission requirements declare conditions under which an agent must elicit
authorization from the human supervisor before executing actions. For example, the directive “Obtain per-
mission before abandoning survey tasks with Priority > 3” imposes the constraint that an agent request
approval from the supervisor to abandon a certain class of tasks.

31

Consultation Requirements Consultation requirements designate a class of agent decisions that should
be deferred to the human supervisor. These decisions can relate to either the selection of a value for variable
instantiation (e.g., “Consult when selecting locations for staging bases”) or the selection of a plan for a goal
(e.g., “Consult when choosing a response to a failed survey task”).

Our model of permission and consultation requirements, like earlier work on authority models, provides
the means to block performance of certain actions by an agent. However, authority models are generally
static (e.g., the levels of autonomy in [2]) and often derived from organizational structures. In contrast,
our approach provides a rich language for expressing permission and consultation policies, which can vary
throughout a problem-solving session.

3.2 Strategy Preference

Strategy preferences express recommendations on how an agent should accomplish tasks. These preferences
could indicate specific plans to employ or restrictions on plans that should not be employed, as well as
constraints on how plan variables can be instantiated.

For example, the directive “Try contacting Nongovernmental Organizations for information before send-
ing vehicles to towns on the west coast” expresses a preference for selecting among operationally equivalent
plans. On the other hand, the directive “Only use helicopters for survey tasks in sectors that are expected to
be inaccessible by truck for more than 1 week” restricts the choice of resource type for instantiating certain
plan variables.

4 The TIGER System

We have developed a prototype implementation of our TRAC framework for agent guidance on top of
the Procedural Reasoning System (PRS) [6]. The TRAC implementation has been used as the basis for a
demonstration system called TIGER (TRAC Intelligence Gathering and Emergency Response) that serves
as a testbed for exploring our ideas on agent directability. Within TIGER, a human supervisor can delegate
tasks to agents while providing guidance to control their runtime behavior.

4.1 TIGER Functionality

TIGER serves as part of a disaster response team whose objective is to provide humanitarian relief in the
wake of a natural disaster. Other organizations within the team provide logistics (e.g., supplies distribution),
operations (e.g., repair of infrastructure), and medical services. These organizations have their own physical
assets (trucks and aircraft) available for their use. As would be expected, these organizations need to share
information and resources to perform their functions effectively. A human commander oversees operations,
dynamically tasking organizations to implement the relief process.1

The primary role for TIGER is to gather information in response to requests from the supervisor or
other members of the disaster response team. These requests can result in tasks to acquire information on
the current state of infrastructure (roads, bridges) in designated regions, or to collect supply requirements
(medical, food, water, shelter) of designated population centers within impacted regions. There can also be

1The system operates within a testbed that simulates a major hurricane in Central America; the testbed is built on the MAPLE
system (http://www.cs.cmu.edu/˜maple/).

32

MAPLESIM

Supervisor

controlled uncontrolled

Coordinator
Agent

TIGER Truck Agents
Heli Agents

Comms
Agent

Figure 1: TIGER Architecture

requests to be informed of key events (such as medical emergencies) as they become known. A secondary
role is to respond to certain unexpected events (e.g., participating in evacuations, assisting with medical
emergencies). Thus, TIGER agents must incorporate reactive capabilities that balance responsiveness with
ongoing goal attainment.

The scope and complexity of the intelligence-gathering operations within the disaster relief context
preclude step-by-step management of agent operations by a human. However, effective coordination of the
available assets requires human supervision. As such, this domain provides an excellent example of an
application that will benefit from technology for agent directability.

4.2 Agent Community Organization

Figure 1 displays the organization of agents within TIGER. The system has at its disposal a collection of
simulated physical agents (trucks and helicopters) that can be used to gather information and respond to
emergencies. In addition, there is a set of simulated communications agents (other relief organizations,
nongovernment organizations, local officials) that can be consulted to obtain information. TIGER contains
a separate controller for each of the physical agents, as well as a communications manager for interacting
with the various simulated communications agents. We refer to these controller agents as the task execution
agents within TIGER, because they instigate and manage the activities required to perform assigned tasks.

The coordinator agent provides global management of tasks within the community, acting as a mediator
between the human supervisor and the task execution agents. It also manages interactions with members of
the disaster response team who request information (i.e., its information clients).

4.3 Tasking Model

The TIGER coordinator agent maintains both a pool of unassigned tasks and a pool of currently unallocated
agents. The coordinator agent matches a waiting task with an unallocated agent based on properties of the
task, the available agents, and current knowledge about the state of the roads and bridges. Task properties

33

include location, priority (an integer from 0 to 10), type (e.g., survey, rescue), and status (e.g., pending,
completed, failed). The agent properties include type (e.g., helicopter or truck) and location.

Task management constitutes a major component of an execution agent’s decision-making process. An
execution agent must determine what to do if, while executing one task, the coordinator agent passes it a
second task. It must also decide when to drop tasks that are not progressing well in favor of new tasks with
higher potential for success.

For simplicity, we limit each task execution agent to at most one active task at any point in time. Agents
may also have pending tasks (which they intend to undertake) and preempted tasks (which were begun but
put aside for higher-priority tasks). Tasks are assigned to individual agents and do not require coordination
with other agents for their completion.

Unexpected events (e.g., a medical emergency) may require immediate response. Events are character-
ized by the properties location, time (of the event), severity (an integer 0 to 10), number of people affected,
and type (e.g., evacuation, medical). The coordinator agent selects an appropriate task execution agent to
deal directly with each such event, thus bypassing the task pool.

These characteristics of tasking simplify the decision process for what an execution agent should do
when it receives a task request. The agent can choose among several combinations of actions, including
ignore the event, adopt a new task to respond to the event, abandon the current active task, transfer the
task to another agent, or postpone the current task until the new task is completed. The agent’s plan library
includes options for each of these choices.

5 Representation of Guidance

Our language for representing agent guidance builds on three main concepts: the underlying agent domain
theory, a domain metatheory, and the connectives of first-order logic. Using these elements, we develop
the main concepts underlying our model of agent guidance. These consist of an activity specification for
describing abstract classes of action, a desire specification for describing abstract classes of goals, and an
agent context for describing situations in which guidance applies.

5.1 Domain Metatheory

A standard domain theory for an agent consists of four types of basic element: individuals corresponding to
real or abstract objects in the domain, relations that describe characteristics of the world, goals that an agent
may adopt, and plans that describe available means for achieving goals.

The domain metatheory provides an abstracted characterization of elements of the domain theory that
highlights key semantic differences. The role of the domain metatheory is to provide a high-level language
for describing activity that abstracts from the details of an agent’s internal representations. As discussed
in [10], such a metatheory can provide a powerful basis for supporting user communication. The main
concepts within our metatheory for agent guidance are features and roles (similar in spirit to those of [9])
defined for agent plans and goals.

Consider first plans. A plan feature designates an attribute of interest for a plan that distinguishes it from
other plans that could be applied to the same task. For example, among plans for route determination, there
may be one that is OPTIMAL but SLOW with a second that is HEURISTIC but FAST; each of these attributes
could be modeled as a feature. Although the two plans are operationally equivalent (i.e., same cue and

34

preconditions), their intrinsic characteristics differ significantly. Features provide the means to distinguish
among such operationally equivalent alternatives.

A plan role describes a capacity in which a domain object is used within a plan; it maps to an individual
variable within a plan. For instance, a route determination plan may contain variables location.1 and
location.2, with the former corresponding to the START and the latter the DESTINATION. Roles provide
a semantic basis for describing the use of individuals within plans that abstracts from the details of specific
variable names.

In analogous fashion, we can define goal features and goal roles. For example, a goal of informing
another party of task progress may have a COMMUNICATION feature and RECIPIENT role associated with it.
These metatheoretic elements can be used to specify the class of goals that involve communicating with the
commander.

The value of the domain metatheory lies with its provision of a semantically motivated abstraction of
the underlying planning domain. This abstraction builds on semantic linkage among domain elements,
specifically the sharing of roles and features among multiple plans and goals. A domain metatheory would
be developed in conjunction with the definition of the underlying domain theory for an agent. As discussed
in [10], a domain metatheory should be a natural by-product of a principled approach to domain modeling.

We use the symbols f and r to denote features and roles. The symbols FP and R P denote the set of plan
features and roles defined for a given agent; similarly, FG and R G denote the set of defined goal features
and roles.

5.2 Activity and Desire Specifications

An activity specification characterizes an abstract class of plan instances for an agent. Our domain metathe-
ory provides the basis for defining an activity specification, in terms of a set of required and prohibited
features on a plan, and constraints on how plan roles are filled.

Definition 1 (Activity Specification) An activity specification A = hF+;F �
;R ;φi consists of

� a set of required features F+ � F P

� a set of prohibited features F� � F P,

� a set of roles R = [r1; : : : ; rk]� R P and

� a role-constraint formula φ[r1; : : : ; rk]

For example, the following activity specification describes the class of plan instances with the feature
SURVEY but not HEURISTIC, where the variables that fill the roles START and DESTINATION are instanti-
ated to values in the same sector.

<{SURVEY},{HEURISTIC},{START, DESTINATION},{(= (SECTOR START) (SECTOR DESTINATION))}>

A desire specification constitutes the goal-oriented analogue of an activity specification, consisting of a
collection of required and prohibited features from FG, required roles from R G, and role constraints. We
use the symbol D to represent a generic desire specification.

35

5.3 Agent Context

Just as individual plans employ preconditions to limit their applicability, guidance rules require a similar
mechanism for defining their scope. To this end, we introduce the notion of an agent context. While plan
preconditions are generally limited to beliefs about the world state, our model of agent context focuses on the
BDI executor state of an agent. As such, it is characterized in terms of the agent’s beliefs, desires, intentions,
as well as the current goal to which it is responding within a given cycle of the executor loop. Beliefs are
specified in terms of constraints on the current world state. Desires are specified as desire specifications
that describe goals that the agent has adopted, including the goal currently being expanded. Intentions are
specified through activity specifications that describe intended plans being executed by the agent.

As discussed in Section 2, our model of agency assumes a hierarchical collection of plans and goals;
furthermore, agents are capable of multitasking (i.e., executing multiple intentions in parallel). Within a
given phase of the BDI execution cycle, goals for an agent of this type can be scoped in three ways:

� Current goal: the goal for which the BDI executor is selecting a plan

� Local goals: the current goal, or any of its ancestors

� Global goals: any goal of the agent

Distinguishing these different scopes for goals enables guidance to be localized to highly specialized situa-
tions. Plans under execution can be scoped similarly.

Definition 2 (Agent Context) An agent context is defined by a tuple C = hΦ;D;Ai, where

� Φ is a set of well-formed formulae

� D = DC [DL [DG is a set of current, local, and global desire specifications

� A = AL [AG is a set of local and global activity specifications.2

5.4 Permission Requirements

Permission requirements are defined in terms of an agent context and a permission-constrained activity
specification. The agent context defines conditions on the operating state of the agent that limit the scope
of the permission requirement. The permission-constrained activity specification designates a class of plan
instances for which permission must be obtained.

Definition 3 (Permission Requirement) A permission requirement hC ;Ai consists of an agent context C
and an activity specification A.

The interpretation of a permission requirement is that, when an agent’s BDI state matches the specified agent
context, permission must be obtained from the supervisor in order to execute a plan instance that matches
the permission-constrained activity.

2The motivation for guidance is to influence the choice of plan to use for the current goal. Since there is not yet an intended plan
for the current goal at the time when the decision is made, the agent context does not include activity specifications for the current
plan.

36

Example 1 (Permission Requirement) The statement “Seek permission to abandon survey tasks with pri-
ority > 5” could be translated into a permission requirement of the form

Agent Context:
Local Activity Spec:
Features+: SURVEY

Permission-Constrained Activity Spec:
Features+: ABANDON
Roles: CURRENT-TASK
Constraint: (> (TASK-PRIORITY CURRENT-TASK) 5)

5.5 Consultation Requirements

TRAC supports two types of consultation requirements: value and plan. A value consultation requirement
consists of an agent context and a consultation role. The interpretation of a value consultation requirement
is that when an agent’s BDI executor state matches the agent context, any instantiation decision for a vari-
able corresponding to the consultation role should be passed to the human supervisor. A plan consultation
requirement consists of an agent context and a desire specification; it indicates that when an agent’s BDI
executor state matches the agent context, the human supervisor should be asked to select a plan to apply for
any goal that matches the desire specification.

Definition 4 (Consultation Requirements) A value consultation requirement hC ;ri consists of an agent
context C and a role r. A plan consultation requirement hC ;Di consists of an agent context C and a desire
specification D.

Example 2 (Consultation Requirements) The guidance “When responding to medical emergencies, con-
sult when selecting a medical evacuation site” could be translated into a consultation requirement of the
form

Agent Context:
Local Activity Spec:
Features+: RESPONSE, MEDICAL-EMERGENCY
Consultation Role: MEDEVAC-SITE

The guidance “Consult when choosing a response to a failed survey task” could be translated into a plan
consultation requirement of the form

Agent Context:
Local Activity Spec:
Features+: SURVEY, FAILURE
Current Desire Spec:
Features+: RESPONSE

5.6 Strategy Preference

Strategy preference guidance consists of two components: an agent context and a response activity specifica-
tion. The activity specification designates the class of recommended plan instances to be applied (i.e., choice
of plan and variable instantiations for designated roles) when an agent’s state that matches the designated
agent context.

37

Definition 5 (Strategy Preference) A strategy preference rule is defined by a pair hC ;Ai where C is an
agent context and A is an activity specification.

Example 3 The statement “Don’t take on medical emergencies involving fewer than 5 people when the
current task priority exceeds the emergency severity” could be represented by the following strategy pref-
erence:

Agent Context:
Belief: (CURRENT-TASK task.1)
Current Desire Spec:
Features+: RESPONSE
Roles: EVENT
Constraint:
(AND (= (EVENT-TYPE EVENT) MEDICAL-EMERGENCY)

(< (EVENT-NUMBER-AFFECTED EVENT) 5)
(> (TASK-PRIORITY CURRENT-TASK) (EVENT-SEVERITY EVENT)))

Response Activity Spec:
Features-: ADOPT

A goal with the feature RESPONSE and role EVENT triggers consideration of the guidance, provided
that EVENT has type MEDICAL-EMERGENCY with fewer than 5 affected people, and the priority of
CURRENT-TASK is greater than the severity of EVENT. The response activity specification indicates not
to adopt responsibility for the emergency in such cases.

6 Guidance Semantics

Semantically, guidance acts as a filter on the plan instances that an agent can execute. When a standard
BDI agent attempts to find an instance of a plan from its library to apply to a goal, it determines a set of
applicable plan instances based on the plan cues and preconditions. The guidance limits this set further in
accord with the following conventions.

A guidance rule is deemed relevant iff its agent context matches the current BDI executor state of the
agent. Each relevant strategy preference rule filters out plan instances that do not match the response ac-
tivity specification. Each relevant permission requirement rule filters out plan instances that match the
permission-constrained activity specification but are refused permission by the supervisor. Each relevant
value consultation rule filters out plan instances that have the consultation role but do not bind the corre-
sponding role variable to a value desired by the supervisor. Each relevant plan consultation rule filters out
all plan instances other than that selected by the supervisor.

This section defines the semantics of guidance more formally. Section 6.1 defines matching for activity
specifications, desire specifications, and agent context; these concepts are used in Section 6.2 to define
guidance satisfaction.

6.1 Matching

Let a be either a plan or a goal. The function Features(a) designates the features defined for a while
Roles(a) designates the roles defined for a. The function RoleVal(a;r) designates the term that instantiates
the role r in a (if one exists). For an uninstantiated plan p, RoleVal(p;r) will generally be a variable. For a

38

plan instance, RoleVal(p;r) reflects any bindings for the role. To simplify the presentation, we restrict the
structure of plans so that roles are bound to ground terms as part of the testing of applicability of a plan,
through unification with the cue and/or precondition testing. We use the notation φ[x1 : v2; : : : xn : vn] to
represent a well-formed formula φ in which each occurrence of the variable xi is replaced by the value vi.

Definition 6 (Activity Specification Match) A plan instance p matches an activity specification A =
hF +

;F �
;R ;φi in BDI executor state S = hBel;Des; Int;gcuri iff:

� Features(p) � F +

� F � \ Features(p) = /0

� R � Roles(p)

� Bel j= φ[r1 : RoleVal(p;r1) : : : rk : RoleVal(p;r1)]

Desire specification matches are defined similarly. We use the notation ActivityMatch(p;A;S)
DesireMatch(g;D;S) to denote activity specification and desire specification matches, respectively.

Let Intention(g) be the intention that produced goal g, let AllPlans(i) be the plan instances chosen for
execution within intention i, and let AllGoals(i) be the current goals of those plan instances.

Definition 7 (Agent Context Match) A BDI executor state S = hBel;Des; Int;gcuri matches an agent con-
text C = hB ;D;Ai iff:

� For all φ2 B , Bel j= φ,

� For all D 2 DC, DesireMatch(gcur
;D;S),

� For all D 2 DL, 9g 2 AllGoals(Intention(gcur)): DesireMatch(g;D;S),

� For all D 2 DG, 9i 2 Int;g 2 AllGoals(i): DesireMatch(g;D;S),

� For all A 2 AL, 9p 2 AllPlans(Intention(gcur)): ActivityMatch(p;A;S),

� For all A 2 AG, 9i 2 Int; p 2 AllPlans(i): ActivityMatch(p;A;S)

We use the notation ContextMatch(C ;S) to denote that an agent context C matches a BDI executor state
S.

6.2 Guidance Satisfaction

Building on the definitions from the previous section, we define the concept of satisfaction of agent guid-
ance. In the following definitions, we distinguish trivial from nontrivial satisfaction. Trivial satisfaction
occurs when the guidance rule doesn’t impact the selection of plan instance for a given executor cycle. This
can occur, for example, because the guidance is not relevant in the current state.

Definition 8 (Satisfaction: Strategy Selection Rule) A plan instance p trivially satisfies a strategy selec-
tion rule RS = hC ;Ai for a BDI executor state S iff ContextMatch(C ;S) does not hold; p nontrivially satisfies
RS iff ActivityMatch(p;A;S) holds.

39

The guidance rules for permission and consultation may require explicit feedback from the human su-
pervisor. We model this interaction using the following oracle fluents:

� Permission(p;S) specifies whether the human supervisor authorizes an agent with BDI executor state
S to adopt plan p

� ValueChoice(r;V;S) specifies the human supervisor’s preferred instantiation for role r among values
in V , in BDI executor state S

� PlanChoice(D;P;S) specifies the human supervisor’s preferred plan in P for goals that match D, in
BDI executor state S.

Definition 9 (Satisfaction: Permission Rule) A plan instance p trivially satisfies a permission requirement
rule RP = hC ;Ai for a BDI executor state S iff either of ContextMatch(C ;S) or ActivityMatch(p;A;S) does
not hold; p nontrivially satisfies RP iff Permission(p;S) = True holds.

Whereas permission requirements relate to individual plans, consultation requirements apply when there
are choices among role values or applicable plans. Thus, the decision on whether consultation is necessary
depends on what other plans are applicable.

Definition 10 (Satisfaction: Value Consultation Rule) Let RVC = hC ;ri be a value consultation rule, S =
hBel;Des; Int;gcuri be a BDI executor state, and P the set of applicable plans for gcur. Let V be the set of
instances to which r is instantiated in P, i.e., V = fRoleVal(p;r) j p 2 P ^ r 2 Roles(p)g. A plan p 2 P
trivially satisfies RVC for S iff either ContextMatch(C ;S) does not hold, r 62 Roles(p), or V contains one or
fewer elements; p nontrivially satisfies RVC for S iff RoleVal(p;r) = ValueChoice(r;V;S).

Definition 11 (Satisfaction: Plan Consultation Rule) Let RPC = hC ;Di be a plan consultation rule and
S = hBel;Des; Int;gcuri a BDI executor state. Let P be the set of applicable plans for gcur. A plan p 2 P
trivially satisfies RPC for S iff either ContextMatch(C ;S) does not hold, DesireMatch(g;D;S) does not hold,
or P contains one or fewer elements; a plan p nontrivially satisfies RPC for S iff p = PlanChoice(D;P;S).

We say that an agent violates a piece of guidance during a given executor loop cycle iff the agent selects
a plan instance for the current goal that does not satisfy the guidance. In the ideal, an agent executor would
avoid violating any user-provided guidance during its operation. However, factors beyond the executor’s
control will generally make it impossible to avoid all such violations. In particular, users may provide
conflicting guidance to an agent that recommends incompatible choices. Conflicts can arise in different
forms. Here, we distinguish between direct and indirect conflicts.

Direct conflicts arise when strategy preference guidance yields inconsistent recommendations within a
given BDI executor cycle. Such conflicts can be at the level of plan instances (e.g., Execute P and Don’t
execute P) or the level of variable bindings (e.g., Instantiate role R to A and Instantiate role R to B).

Indirect conflicts arise when guidance recommends multiple plan instances for execution such that, while
their execution can be initiated, it is impossible for all of them to complete successfully. For example, the
simultaneous execution of two plan instances could lead to deadlock or livelock situations, or downstream
resource contention. Such harmful interactions can arise within any multithreaded system, not just systems
in which guidance is used to select activities. Because general mechanisms for detecting these interactions
do not yet exist, we consider only direct conflicts in the remainder of this paper.

40

Given the potential for conflicting guidance, the best that we can expect from an executor is that it satisfy
as much guidance as possible with each plan selection decision. The following definition of maximally
guidance compliant captures this requirement.

Definition 12 (Maximally Guidance Compliant) An executor is called maximally guidance compliant iff
for a given set of guidance rules G, the executor selects a plan instance p that satisfies a maximal subset
of G. That is, if the executor selects a plan instance p such that p satisfies G+ and violates G� where
G = G+[G�, then there is no applicable plan instance p0 that satisfies G+[fRg for any R 2 G�.

7 Enforcement of Guidance

In this section, we describe a simple extension to the BDI executor from Section 2 that ensures maximal
guidance compliance for a set of strategy selection, permission requirement, and consultation requirement
guidance rules. This set can vary over time but is assumed fixed for a given iteration of the executor loop.

Enforcement of guidance is attained through a simple modification to the executor loop at the point
where a plan instance is selected to be intended in response to a posted goal or fact. First, the current BDI
executor state for an agent is matched to the agent context of all current guidance to determine the relevant
guidance for the current execution cycle. Each piece of relevant guidance is then evaluated to determine
which applicable plan instances lead to violations, with each plan instance being tagged with the guidance
that it violates. A strategy preference rule will eliminate plan instances that do not match their response
activity specification. For a permission rule, the human supervisor is queried to determine whether the plan
instance is allowed. For a consultation rule, the user is queried for any plan or role instantiation choices.

If after consideration of all relevant guidance rules there remains one or more plan instances with no
violations, then any of them can be selected for application. If every plan instance has at least one violation,
then the executor selects a piece of guidance and eliminates the violations associated with it. Any plan
instance without violations would then be considered for application. This process repeats until at least one
such plan instance results. The agent then applies the selected plan instance to the current goal.

Different selection strategies can be adopted for deciding the order in which to drop guidance rules. One
obvious strategy would prefer permission and consultation requirements over strategy selection rules, since
the former incorporate situation-specific information regarding user preferences. Additionally, one could
define weights that reflect relative strength of preference for guidance rules. A policy for combining and
comparing the weights associated with the guidance rules that made the conflicting recommendations can
then be used to select guidance to ignore, as a way of eliminating the conflict. TIGER incorporates this type
of approach to deal with direct conflicts.

We refer to the above BDI executor algorithm as the guidance filtering executor. It is straightforward to
establish the following proposition.

Proposition 1 (Guidance Compliance) The guidance filtering executor is maximally guidance compliant.

8 Guidance Interface Tools

The motivation for our work on agent directability is to enable users to direct and manage agents in dynamic,
unpredictable environments. The language presented in earlier sections provides a highly expressive formal-
ism in which to define agent guidance; however, the complexity of the language could overwhelm a typical
user. For this reason, we have developed two tools to help users define and manipulate agent guidance.

41

The first tool is a guidance authoring interface that walks the user through the process of constructing
a complex piece of guidance. To enable a simple specification process, the tool does not support the full
expressivity of the formal guidance language; however, it supports a broad range of expressions, including
the examples described in this paper. An accompanying guidance library can be used to store authored
guidance. Users can select guidance from the library, as appropriate for a particular situation.

The second tool is a permissions window that enables users to activate and deactivate permission require-
ments for certain classes of action performed on certain types of task. In particular, selections made through
this interface are compiled into corresponding permission requirement structures. While this interface limits
the scope of permission requirements that can be expressed, it provides a simple, accessible specification
mechanism.

9 Related Work

Recognition of the need for technologies to support human-agent interactions has grown substantially in the
past few years. However, few concrete technical approaches have been proposed to enable agent directabil-
ity.

Scerri et al. [13] apply Markov decision processes (MDPs) to provide a form of adjustable agent au-
tonomy. Their approach involves defining an MDP that describes all possible courses of action. The agent
uses expected utility estimates from this model to determine when to consult the supervisor, and adjusts the
model parameters based on experience. To avoid learning inappropriate behavior, users can impose con-
straints on what can be learned. In contrast to our approach of having a human explicitly define a policy for
autonomy, an agent within this framework determines an appropriate level on its own.

Schreckenghost et al. [14] apply the concept of adjustable autonomy to the management of space-based
life support systems. In their system, a human can take over both the selection of tasks to perform and the
execution of those tasks. In contrast to our use of explicit policies, the level of autonomy is specified by
directly altering a “level of autonomy” setting (manual vs. autonomous) for all tasks, for a subsystem, or
for an individual task.

Our strategy preference guidance selects among previously defined alternative plans; it does not expand
the behavioral capabilities of the agent. In contrast, the work on policy-based control for distributed systems
management supports runtime definition of new behaviors (e.g., [8]). Policy languages in this area focus on
the concepts of authority and obligation to perform actions.

10 Conclusion

This paper presents a framework for human directability of agents that enables a user to define polices
for adjustable agent autonomy and strategy preference. Through these mechanisms, a human supervisor
can customize the operation of agents to suit his individual preferences and the dynamics of unexpected
situations. In this way, system reliability and user confidence can be increased substantially over fully au-
tonomous agent systems. The power of these ideas has been demonstrated within the TIGER system, which
supports a human intelligence officer in managing a community of agents engaged in tasks for information
gathering and emergency response.

Many outstanding issues in this area remain to be addressed; we briefly describe three topics for future
work.

42

Detecting and Resolving Guidance Conflicts As discussed above, TIGER recognizes only a limited class
of guidance-related conflicts (namely, direct conflicts among guidance). Indirect conflicts among guidance,
and conflicts between guidance and ongoing activities require more powerful detection methods that reason
about the downstream effects and requirements of plans. Furthermore, our prioritization scheme for resolv-
ing direct conflicts presents a simple approach to conflicting guidance; it would be interesting to incorporate
more advanced conflict resolution policies (e.g., [4, 7]).

Community Guidance The forms of agent directability described in this paper focus on influencing the
behavior of an individual agent. Human supervisors will also want to express control at the community level,
to encourage or discourage various forms of collective behaviors. The guidance “Keep 2 trucks within 15
miles of headquarters” provides an example. Enforcement of this type of guidance will require mechanisms
that support information exchange and coordinated action selection among groups of agents.

Collaborative Control Our model of agent directability provides a form of supervised autonomy [1] in
which control over autonomy rests solely with the human supervisor. Some situations may benefit from a
more collaborative approach , where both sides share control over initiative. For example, an agent may
choose to initiate a dialogue with the human in situations where adherence to guidance would interfere with
the pursuit of current goals, rather than blindly following the user’s recommendations.

11 Acknowledgments

The authors thank Eric Hsu for his contributions in developing the TIGER interface, and Sebastian Thrun
and his group at CMU for providing the MAPLE simulator. This work was supported by DARPA under the
supervision of Air Force Research Laboratory contract F30602-98-C-0160.

References

[1] K. S. Barber and C. E. Martin. Agent autonomy: Specification, measurement, and dynamic adjustment.
In Proceedings of the Autonomy Control Software Workshop at Autonomous Agents, 1999.

[2] P. Bonasso. Issues in providing adjustable autonomy in the 3T architecture. In Proceedings of the
AAAI Spring Symposium on Agents with Adjustable Autonomy, 1999.

[3] H. Chalupsky, Y. Gil, C. A. Knoblock, K. Lerman, J. Oh, D. Pynadath, T. A. Russ, and M. Tambe.
Electric Elves: Applying agent technology to support human organizations. In Proceedings of the
Thirteenth Conference on Innovative Applications of Artificial Intelligence, 2001.

[4] F. Dignum, D. Morley, E. A. Sonenberg, and L. Cavedon. Towards socially sophisticated BDI agents.
In Proceedings of the Fourth International Conference on MultiAgent Systems (ICMAS’2000), 2000.

[5] G. Ferguson and J. Allen. TRIPS: Towards a mixed-initiative planning assistant. In Proceedings of the
AIPS Workshop on Interactive and Collaborative Planning, 1998.

[6] M. P. Georgeff and F. F. Ingrand. Decision-making in an embedded reasoning system. In Proceedings
of the Eleventh International Joint Conference on Artificial Intelligence, 1989.

43

[7] E. Lupu and M. Sloman. Conflicts in policy-based distributed systems. IEEE Transactions on Software
Engineering, Special Issue on Inconsistency Management, 25(6), 1999.

[8] J. D. Moffett and M. S. Sloman. Policy hierarchies for distributed systems management. IEEE Journal
on Selected Areas in Communications, 11(9), 1993.

[9] K. L. Myers. Strategic advice for hierarchical planners. In L. C. Aiello, J. Doyle, and S. C. Shapiro, ed-
itors, Principles of Knowledge Representation and Reasoning: Proceedings of the Fifth International
Conference (KR ’96). Morgan Kaufmann Publishers, 1996.

[10] K. L. Myers. Domain metatheories: Enabling user-centric planning. In Proceedings of the AAAI-2000
Workshop on Representational Issues for Real-World Planning Systems, 2000.

[11] K. L. Myers and D. N. Morley. Directing agent communities: An initial framework. In Proceedings
of the IJCAI Workshop on Autonomy, Delegation, and Control: Interacting with Autonomous Agents,
2001.

[12] A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In Proceedings of the International
Conference on Multi-Agent Systems (ICMAS-95), San Francisco, USA, 1995.

[13] P. Scerri, D. Pynadath, and M. Tambe. Adjustable autonomy in real-world multi-agent environments.
In Proceedings of the International Conference on Autonomous Agents, 2001.

[14] D. Schreckenghost, J. Malin, C. Thronesbery, G. Watts, and L. Fleming. Adjustable control autonomy
for anomaly response in space-based life support systems. In Proceedings of the IJCAI Workshop on
Autonomy, Delegation, and Control: Interacting with Autonomous Agents, 2001.

[15] D. E. Wilkins and K. L. Myers. A common knowledge representation for plan generation and reactive
execution. Journal of Logic and Computation, 5(6), 1995.

44

Resolving Conflicts in Agent Guidance

Karen L. Myers David N. Morley
Artificial Intelligence Center

SRI International
333 Ravenswood Ave.

Menlo Park, CA 94025
myers@ai.sri.com morley@ai.sri.com

Abstract

For agent technology to be accepted in real-world applica-
tions, humans must be able to customize and control agent
operations. One approach for providing such controllabil-
ity is to enable a human supervisor to define guidance for
agents in the form of policies that establish boundaries on
agent behavior. This paper considers the problem of conflict-
ing guidance for agents, making contributions in two areas:
(a) outlining a space of conflict types, and (b) defining reso-
lution methods that provide robust agent operation in the face
of conflicts. These resolution methods combine a guidance-
based preference relation over plan choices with an ability
to extend the set of options considered by an agent when
conflicts arise. The paper also describes a PRS-based guid-
ance conflict-handling capability applied within a multiagent
intelligence-gathering domain.

Introduction
Many potential applications for agent technology require
that humans and agents work together in order to accom-
plish tasks effectively. This requirement is especially im-
portant for domains where task complexity precludes for-
malization of agent behaviors for all possible eventualities.
In such domains, the availability of mechanisms by which
a human supervisor can provide direction will enable agents
to be informed by the experience, breadth of knowledge, and
superior reasoning capabilities that a human expert can bring
to the problem-solving process.

In previous work, we defined a framework for agent guid-
ance that supports dynamic directability of agents by a hu-
man supervisor (Myers & Morley 2001; 2002). Guidance
imposes boundaries on agent behavior, thus enabling a hu-
man to customize and direct agent operations to suit his or
her individual requirements. The guidance framework fo-
cuses on two types of agent directability, namely adjustable
agent autonomy and strategy preferences. Guidance for ad-
justable autonomy enables a supervisor to vary the degree
to which agents can make decisions without human inter-
vention. Guidance for strategy preferences constitutes rec-
ommendations on how agents should accomplish assigned
tasks. For example, the directive “Use helicopters for survey

Copyright c
 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

tasks in sectors on the west coast” imposes restrictions on
how resources can be used to perform a certain class of task.

User guidance provides a powerful mechanism for run-
time customization of agent behavior. However, it also in-
troduces the potential for problems in the event that the guid-
ance recommends inconsistent responses. Such conflicts
cannot arise with adjustable autonomy guidance, but are a
significant issue for strategy preference guidance. Robust-
ness of operations requires mechanisms for detecting these
conflicts and responding in a manner that does not jeopar-
dize agent stability.

This paper addresses two main issues related to the topic
of conflicting strategy preference guidance for agents. First,
it identifies different types of conflict that can arise. Second,
it defines automated techniques for resolving the conflicts.
Our approach combines the selective dropping of problem-
atic pieces of guidance with a proactive capability to elimi-
nate the source of conflicts by modifying current agent activ-
ities. We do not consider interactive techniques for conflict
resolution in this paper, although they would certainly play
an important role in a comprehensive conflict resolution sys-
tem.

The conflict resolution techniques defined in this paper
have been implemented within the Taskable Reactive Agent
Communities (TRAC) framework (Myers & Morley 2001;
2002), which provides a domain-independent guidance ca-
pability for PRS agents (Georgeff & Ingrand 1989). The
techniques have been applied within the context of a sim-
ulated disaster relief task force in which a human super-
visor must manage a team of agents engaged in a vari-
ety of information-gathering and emergency response tasks.
Within this testbed, referred to as TIGER (TRAC Intelli-
gence Gathering and Emergency Response), agents control
simulated trucks and helicopters in the performance of their
assigned tasks.

We begin with a description of the agent model that un-
derlies our work on agent guidance, followed by a definition
of strategy preference guidance. Next, we outline different
types of conflict that can arise with agent guidance and our
conflict resolution methods. Finally, we describe a realiza-
tion of the conflict resolution mechanisms within the TIGER
framework and discuss related work.

45

Agent Model

We adopt a typical Belief-Desire-Intention (BDI) model of
agency in the style of (Rao & Georgeff 1995). BDI agents
are so-called due to the three components of their “mental
state”: beliefs that the agent has about the state of the world,
desires to be achieved, and intentions corresponding to ac-
tions that the agent has adopted to achieve its desires.

Each agent has a library of plans that defines the range of
activities that an agent can perform to respond to events or to
achieve assigned tasks; our plan model is based on (Wilkins
& Myers 1995). Plans are parameterized templates of ac-
tivities that may require variable instantiations to apply to
a particular situation. In a standard BDI framework, there
are two types of plan: fact-invoked plans for responding to
changes in the beliefs of the agent, and goal-invoked plans
for decomposing tasks into constituent subgoals and actions.

Each plan has a cue that specifies a stimulus that activates
the plan, either a new goal (for a goal-invoked plan) or a
change in the agent’s beliefs (for a fact-invoked plan). A set
of preconditions associated with plans defines gating con-
straints that must be satisfied for a plan to be applied. A
plan is said to be relevant to a world change (e.g., new goal
or belief change event) if the plan cue matches the stimu-
lus, and applicable if, additionally, the plan preconditions
are satisfied relative to the agent’s current beliefs. The body
of a plan specifies how to respond to the stimulus, in terms
of actions to perform and subgoals to achieve.

An agent’s plan library will generally contain a range
of plans describing alternative responses to posted goals or
events. Sets of these plans may be operationally equivalent
(i.e., they share the same cue and preconditions) but differ in
the approach that they embody. Some form of metacontrol
policy can be defined to select among such alternatives, such
as strategy preference guidance.

A BDI interpreter runs a continuous sense-decide-act loop
to respond to changes in its operating environment. At the
start of each cycle, the interpreter collects all new goals and
events (i.e., changes in its beliefs about the world). Next, it
determines whether there are any plans in its library that are
applicable to these changes. From this set, it selects some
subset for execution and creates intentions for them. Finally,
some bounded number of steps for each current intention are
performed.

The guidance framework assumes that agents are capable
of fully autonomous operation. More concretely, an agent’s
plan library covers the range of activities required to perform
its assigned tasks. This assumption means that agents do not
depend on the human supervisor to provide knowledge to
complete tasks. Within this setting, guidance provides cus-
tomization of agent behavior to suit the preferences of the
human supervisor. In many applications, such guidance will
enable superior performance, given that few plan libraries
will reflect the experience, breadth of knowledge, and rea-
soning capabilities that a human supervisor can bring to the
decision-making process.

Strategy Preference Guidance
Strategy preference guidance expresses recommendations
on how an agent should accomplish tasks. These prefer-
ences could designate classes of plans to employ or restric-
tions on plans that should not be employed, as well as con-
straints on how plan variables can be instantiated. For ex-
ample, the directive “Try contacting Nongovernmental Orga-
nizations for information before sending vehicles to towns on
the west coast” expresses a preference for selecting among
operationally equivalent plans. The directive “Only use heli-
copters for survey tasks in sectors that are expected to be in-
accessible by truck for more than 1 week” restricts the choice
of resource type for instantiating certain plan variables.

Representation of Guidance

Our language for representing agent guidance builds on
three main concepts: the underlying agent domain theory, a
domain metatheory, and the connectives of first-order logic.
Using these elements, we develop the main concepts under-
lying our model of agent guidance. These consist of an ac-
tivity specification for describing abstract classes of action,
a desire specification for describing abstract classes of goal,
and an agent context for describing situations in which guid-
ance applies.

Domain Metatheory A standard domain theory for an
agent consists of four types of basic element: individuals
corresponding to real or abstract objects in the domain, re-
lations that describe characteristics of the world, goals that
an agent may adopt, and plans that describe available means
for achieving goals.

The domain metatheory provides an abstracted charac-
terization of elements of the domain theory that highlights
key semantic differences. As discussed in (Myers 2000a),
a metatheory can yield a rich vocabulary for describing ac-
tivity, thus providing a powerful basis for supporting user
communication. The main concepts within our metatheory
for agent guidance are features and roles (similar in spirit to
those of (Myers 1996)) defined for agent plans and goals.

Consider first plans. A plan feature designates an attribute
of interest for a plan that distinguishes it from other plans
that could be applied to the same task. For example, among
plans for route determination, there may be one that is Opti-
mal but Slow with a second that is Heuristic but Fast; each of
these attributes could be modeled as a feature. Although the
two plans are operationally equivalent (i.e., same cue and
preconditions), their intrinsic characteristics differ signifi-
cantly. Features provide the means to distinguish between
such operationally equivalent alternatives.

A plan role describes a capacity in which a domain ob-
ject is used within a plan; it maps to an individual variable
within a plan. For instance, a route determination plan may
contain variables location.1 and location.2, with the former
corresponding to the Start and the latter the Destination.

In analogous fashion, roles and features can also be de-
fined for goals. For example, a goal of informing another
party of task progress may have a Communication feature
and Recipient role associated with it. These metatheoretic

46

constructs can be used to specify the class of goals that in-
volve communicating with the commander.

Activity and Desire Specification An activity specifica-
tion characterizes an abstract class of plan instances for an
agent. Our domain metatheory provides the basis for defin-
ing an activity specification, in terms of a set of required and
prohibited features on a plan, as well as constraints on the
way in which plan roles are filled.

Definition 1 (Activity Specification) An activity specifica-
tion α = hF +;F �;R ;φi consists of

� a set of required features F +

� a set of prohibited features F �

� a set of roles R = [R1; : : : ; Rk]

� a role-constraint formula φ[R1; : : : ; Rk]

For example, the following activity specification describes
the class of plan instances with the feature Survey but not
Heuristic, where the variables that fill the roles Start and
Destination are instantiated to values in the same sector.
<fSurveyg, fHeuristicg, fStart, Destinationg,

f(= (sector Start) (sector Destination))g>
A desire specification constitutes the goal-oriented ana-

logue of an activity specification, consisting of a collection
of required features, prohibited features, roles, and role con-
straints for goals.

Agent Context Just as individual plans employ precondi-
tions to limit their applicability, guidance requires a similar
mechanism for defining scope. To this end, we introduce
the notion of an agent context. While plan preconditions are
generally limited to beliefs about the world state, our model
of agent context focuses on the full operational state of an
agent, characterized in terms of its beliefs, desires, and in-
tentions. Beliefs are specified in terms of constraints on the
current world state. Desires are specified as desire specifica-
tions describing goals that the agent has adopted. Intentions
are specified as activity specifications describing plans cur-
rently in execution by the agent.

Our model of agency assumes a hierarchical collection of
plans and goals; furthermore, agents are capable of multi-
tasking (i.e., addressing multiple goals in parallel). Within a
given phase of the BDI executor cycle, an agent’s goals can
be scoped in three ways:

� Current goal: the goal for which the BDI interpreter is
selecting a plan to execute

� Local goals: the current goal or any of its ancestors

� Global goals: any goal of the agent

By distinguishing these different scopes for goals, guid-
ance can be localized to more specific situations. Plans be-
ing executed can be scoped in a similar fashion.

Definition 2 (Agent Context) An agent context is defined
by a tuple κ = hΦ;∆;Ai, where

� Φ is a set of well-formed formulae.
� ∆ = ∆C [∆L [∆G is a set of current, local, and global

desire specifications, respectively.

� A = AL [AG is a set of local and global activity specifi-
cations, respectively.1

Strategy Preference Strategy preference guidance con-
sists of two components: an agent context and a response
activity specification. The activity specification designates
the class of recommended plan instances to be applied (i.e.,
choice of plan and variable instantiations for designated
roles) when the agent enters a state that matches the des-
ignated agent context.

Definition 3 (Strategy Preference) A strategy preference
rule is defined by a pair hκ;αi where κ is an agent context
and α is an activity specification.

Example
To illustrate strategy preference guidance, we consider an
example from a simplified description of the TIGER do-
main.

Within TIGER, the demand for intelligence gathering and
other services generally exceeds the capabilities of the avail-
able agents. As a result, task management constitutes one of
the key functions of TIGER agents. We assume that tasks
have associated properties such as type (e.g., survey, evacu-
ation, medical emergency) and priority.

A TIGER agent controls a single vehicle (either a truck or
a helicopter) and can work on at most one task at any time.
When an agent receives a task in the form of a goal (task t),
it must decide whether to start on the task immediately, to
postpone the task until other tasks are completed, or to drop
the task, leaving it for other agents to perform. We use the
following predicates to represent the task execution state of
the agent:

� (available) – the vehicle that the agent is controlling is
available for use

� (doing t) – the agent is doing task t

� (pending t) – the agent will do task t after it has completed
other tasks

� (ignored t) – the agent has determined not to do task t

Using a simple notation for describing plans, Figure 1 de-
fines three plans for responding to the goal (task t). In the
bodies of these plans, we represent the action of asserting a
fact φ into the agent’s belief set by +φ and retracting φ by
�φ. We use the notation fa1; : : :akg to represent performing
k actions in parallel within the body of a plan. The notation
a1;a2 denotes action sequencing.

The first plan encodes a response to (task t) when not
engaged in another task; it involves asserting (doing t), re-
tracting (available), and then performing t. The second plan
records the task as pending in the case where the agent is
busy. The third plan ignores the task. Additional plans (not
shown) provide the capabilities to start a pending task when
the active task completes, to perform a task, etc.

Features for these plans reflect their inherent semantic dif-
ferences: Adopt indicates that the plan results in the agent

1Because the motivation for guidance is to influence the choice
of plan for the current goal, the agent context excludes an activity
specification for the current plan.

47

Name: Immediate-Response
Cue: (task t)
Preconditions: (available)
Body: f�(available);+(doing t)g;(do t)
Features: Adopt Roles: NewTask = t

Name: Delay-Response
Cue: (task t)
Preconditions: :(available)
Body: +(pending t)
Features: Adopt;Delay Roles: NewTask = t

Name: Ignore-Response
Cue: (task t)
Preconditions: true
Body: +(ignored t)
Features: Ignore Roles: NewTask = t

Figure 1: TIGER Task Management Plans

deciding to perform the goal task, although maybe not im-
mediately; Delay indicates that the plan results in execution
of t being delayed; Ignore indicates that the plan results
in the agent deciding not to perform t (the complement of
Adopt). The role NewTask is used to reference the new task
under consideration. For goal (task t) we associate the fea-
ture TaskResponse and role CurrentTask = t.

With these features and roles, we can define strategy
preference rules to provide guidance for responding to
a new task. For example, the guidance “Adopt medical
emergency tasks that involve more than 5 people” could be
represented by the following strategy preference rule:

Agent Context:
Current Desire Specification:

Features+: TaskResponse
Roles: CurrentTask
Constraint:

(and (= (task-type CurrentTask) medical)
(> (task-number-affected CurrentTask) 5))

Response Activity Specification:
Features+: Adopt

The agent context states that the guidance is applica-
ble when the current goal has the feature TaskResponse
and the role CurrentTask, so that the task that instanti-
ates CurrentTask has type medical and more than five peo-
ple affected. The response activity specification desig-
nates any plan with the feature Adopt. Given the plans de-
fined above, that would mean either Immediate-Response or
Delay-Response.

Guidance Semantic Model

Space limitations preclude a full description of the semantics
for guidance satisfaction defined in (Myers & Morley 2002).
We present a brief summary here.

The semantic model for guidance satisfaction interprets
strategy preference rules as a filter on the plan instances that

an agent can execute. A strategy preference rule is deemed
to be relevant to a given BDI executor cycle iff the agent
context of the rule matches the current execution state. For
a relevant rule to be satisfied, the BDI interpreter must not
select a plan instance that violates the rule’s activity speci-
fication. One interesting consequence of this model is that
a strategy preference rule that is not relevant to the current
decision cycle is trivially satisfied.

When a BDI agent needs to expand a goal, it determines
the applicable plans for the goal and selects one of these to
add to its intentions. Under the guidance satisfaction model,
the set of plans from which the agent selects is restricted
to those that satisfy the strategy preference rules: the agent
identifies the relevant strategy preference rules and filters out
plan instances that do not match the suggested response. The
BDI interpreter selects one of the remaining plans to execute
for the current goal.

Types of Guidance Conflict
Guidance can lead to two types of conflict: plan selection
and situated guidance.

Plan Selection Conflict
A plan selection conflict occurs when multiple pieces of
guidance make incompatible recommendations for respond-
ing to a goal within a given cycle of the BDI executor. Con-
flicts of this type can arise in different forms. Here, we dis-
tinguish between direct and indirect conflicts.

A direct conflict arises when guidance yields contradic-
tory plan selection recommendations. At the plan level, such
conflicts can arise through explicitly contradictory directives
(e.g., guidance that reduces to the constraints Execute plan
P and Don’t execute plan P), or implicitly because of in-
place control policies (e.g., guidance that reduces to the con-
straints Execute plan P and Execute plan Q in the context of
a control policy that allows only one response to any posted
goal). Conflicts can also arise at the level of variable bind-
ings (e.g., Instantiate role R to A and Instantiate role R to B,
where A 6= B).

An indirect conflict among guidance occurs when there is
no direct conflict, yet the plans recommended by the guid-
ance cannot complete successfully because of interplan in-
teractions. Such a situation could arise due to future con-
tention for resources, deadlock/livelock, or race conditions
(among others). The problem of indirect conflict arises for
any multithreaded system, not just systems in which guid-
ance has been used to select activities.

Direct conflicts are easy to detect, as they lead to incom-
patible recommendations for responding to a posted goal. In
contrast, it is generally difficult to detect a priori the plan in-
terference problems that underlie indirect conflicts. Because
such interference problems remain an open research area in
the agents community, we focus exclusively on direct con-
flicts in the remainder of this paper.

Situated Guidance Conflicts
The semantic model from (Myers & Morley 2002) inter-
prets guidance as a filter on the set of otherwise applicable

48

plan instances for a particular goal or event. For example,
consider a situation in which all TIGER vehicles are in use
for various tasks, and the human supervisor has asserted the
guidance Adopt medical emergency tasks that involve more
than 5 people from the previous section. Suppose an emer-
gency event arises. The relevant task adoption plans (namely
Immediate-Response and Delay-Response) each require the
availability of a vehicle. Because all vehicles are in use, no
immediate response plans could be adopted for the event.
Had there been a vehicle available, however, an emergency
response of some form would have been adopted. Further-
more, according to the filtering semantic model, the declared
guidance will eliminate from consideration the only applica-
ble response, namely Ignore-Response, because it does not
satisfy the guidance recommendations.

In this case, there is a clear expectation on the part of the
human supervisor for the system to adopt a task in response
to the emergency. Supporting this reaction requires a gener-
alization of the filter-based semantic model described above.

More generally, this type of conflict arises in situations
where a plan p is relevant for a current goal g but some pre-
condition C of p does not hold, making p inapplicable. The
unsatisfied condition may be blocked by a contradictory be-
lief of the agent, or some already executing activity. This
type of situation can arise independent of guidance. Our
interest in such situations relates to cases where guidance
would recommend the execution of p but the violation of C
eliminates its consideration. In other words, the prior activ-
ity or state condition conflicts with the intent of applying the
guidance. For this reason, we call this phenomenon a situ-
ated guidance conflict, as it depends on the consideration of
guidance within a particular execution state of an agent.

In certain situations, there may be no recourse to address
the violated conditions (e.g., consider a requirement for fa-
vorable weather). However, others may be resolved by un-
dertaking appropriate actions in the domain. Proactive re-
sponse of this type lies at the heart of our techniques for
resolving for this class of guidance conflict.

Conflict Resolution
The original semantic model for guidance interpretation has
a passive flavor in that it simply filters otherwise applicable
plan instances that violate current guidance. This passive
semantic model has the virtue of simplicity, but it eliminates
the applicability of guidance in many interesting situations.

One problematic situation arises when guidance makes
contradictory recommendations (e.g., “Execute plan P” and
“Don’t execute plan P”) as described above for the case of
plan selection conflicts. Because the passive semantic model
eliminates plans that violate current guidance, such a situa-
tion would lead to the selection of no plan. As noted above,
the filter-based semantics also leads to trivial satisfaction
of guidance in cases where a more proactive interpretation
would be preferred.

Meaningful resolution of guidance conflicts requires a
richer semantic model for guidance satisfaction. Our ap-
proach builds on the definition of satisfaction of an individ-
ual piece of guidance from (Myers & Morley 2002). How-
ever, we adopt a preference-based approach that seeks to

maximize guidance satisfaction relative to stated priorities.
Furthermore, instead of reducing the set of plans that the
agent considers (by filtering plans that violate guidance), we
expand the set to include options that would otherwise be
discarded as inapplicable in the current execution state.

Preference Semantics for Plan Selection
Our approach to resolving plan selection conflicts involves
identifying a plan instance that ‘best satisfies’ current guid-
ance, through the definition of a partial order over plan in-
stances. We assume that strategy preference rules include a
weight reflecting the relative strength for that preference.

Different criteria could be used for combining and com-
paring the weights associated with the strategy preference
rules to produce the partial order. We adopt an approach that
rewards guidance satisfaction while punishing guidance vi-
olation, as characterized by the following guidance ranking
function for plan instances.

Definition 4 (Guidance Ranking of a Plan) Let p be a
plan instance for a goal g and Q be the current set of guid-
ance, where Q+p �Q is the set of guidance satisfied by p and

Q�
p � Q is the set violated by p. The guidance ranking of

p is defined as follows in terms of the priority GPriority(q)
associated with each guidance rule q:

GRanking(p) = ∑
q2Q+

p

GPriority(q)� ∑
q2Q�

p

GPriority(q)

Candidate Plan Expansion
The ranking of applicable plan instances is insufficient to
resolve situated guidance conflicts. Our approach involves
expanding the set of plan instances considered for applica-
tion to a given goal. This expanded set builds on the agent’s
library of predefined plans, extending plans that guidance
might recommend to compensate for violated applicability
conditions. The expansion process requires the satisfac-
tion of certain prerequisites related to resolvability and cost-
benefit analysis.

Resolvability The unsatisfied applicability conditions of
the guidance-recommended plan must be resolvable. In
particular, there must be identified methods (called reso-
lution plans) that can be invoked to achieve the unsatisfied
conditions.

Cost-Benefit Analysis The benefits in following the pre-
scribed guidance must outweigh the costs associated with
executing the resolution plans.

We consider these two requirements in turn, and then de-
scribe the process for expanding the set of plan instances to
be considered for a given goal.

Resolvability Resolution plans could be defined for a
wide range of conditions. Resource availability constitutes
one important class; in this paper, we focus on conditions
related to serially sharable resources (i.e., resources that can
be used sequentially but not simultaneously).

In this context, resolution plans must free the resource
employed by the current activity to enable its use by the

49

guidance-recommended plan. Within the context of serially
sharable resources, cancellation of the prior activity consti-
tutes one obvious solution. In addition, prior activities could
be modified to eliminate the dependence on the conflicted
resource, say by substituting a different resource or by de-
laying the prior activity. We call a current activity that is
impacted by a resolution plan a conflict task.

In addition to establishing resolvability conditions, res-
olution plans must also leave an agent in a coherent state.
This requirement means that a resolution plan must consider
the in-progress effects of any current activities that are to be
modified or canceled to ensure that appropriate ‘clean-up’
processes are invoked. For example, consider an emergency
response task in which a truck has picked up a set of sup-
plies to deliver to a designated location. Early termination
of such an activity might involve, at a minimum, delivering
those supplies to a local depot (for delivery by some other
agent). Definition of recovery mechanisms of this type is not
restricted to agents under human supervision via guidance,
but rather constitutes a problem for any agents that need to
dynamically modify their activities at runtime.

Checkpoint schemes constitute one standard technique for
ensuring state coherence when activities may need to be ter-
minated prematurely. With checkpoint schemes, coherent
states are saved periodically to enable rollback to a consis-
tent state in case of unrecoverable failures. Because agents
operating in dynamic environments will generally perform
activities that change the world in irrevocable ways, such
schemes are not viable. Instead, agents require forward re-
covery methods that can take actions to transition from an
unable situation to some known, safe state.

Formulation of forward recovery methods presents sev-
eral problems. In general, the specific actions to take could
depend both on the state of execution of the in-progress
plans and on the status of other executing activities and
world state properties. In the worst case, a unique recovery
method would be required for each such situation. For this
reason, forward recovery mechanisms for agents are gener-
ally implemented in an ad hoc, domain-specific manner.

The resolution plans for task management within TIGER
were defined by hand. They consist of plans for delaying
and terminating prior tasks. Because the number of sub-
tasks involved with the survey and emergency response tasks
is relatively small (i.e., fewer than five), the number of pos-
sible combinations of state to consider is correspondingly
low. Furthermore, tasks are undertaken independently of
each other, so cross-task interactions were not an issue.

Cost-Benefit Analysis The value in modifying exist-
ing activities to enable activation of new guidance-
recommended activities depends on a range of factors. We
consider a model grounded in the following two concepts:

� Resolvability Cost: the cost of executing any required res-
olution plans

� Activity Priorities: the priorities of the recommended ac-
tivity and any conflict activities

Different approaches can be considered for combining
the above factors to determine the appropriate response to

a situated guidance conflict. We describe three general ap-
proaches here.

One approach involves defining a multidimensional
objective function that determines when the guidance-
recommended activity should be undertaken. Such a func-
tion would cover every possible situated guidance conflict,
thus enabling a fully automated conflict resolution method.
Multidimensional evaluation functions are notoriously diffi-
cult to define, as they must relate values that are not directly
comparable. The need to consider all combinations of values
complicates matters further.

In contrast, a mixed-initiative approach could be adopted
in which a human supervisor determines the appropriate
course of action based on the factors cited above. This ap-
proach avoids the cost of defining a priori comparison func-
tions and provides maximum flexibility at runtime. How-
ever, situational conflicts may arise frequently in some do-
mains, thus burdening the user with a high level of decision
making involvement.

A third approach involves the definition of policies (simi-
lar to guidance) for determining the conditions under which
modification of earlier activities should be undertaken. Such
policies would involve constraints on the various factors de-
scribed above. For example, “Only modify ongoing activities
when the priority of the new task exceeds that of the original,
and the recovery cost is less than 0.5”. For situations where
the policies are sufficient to identify a response, conflicts
will be resolved automatically. In other cases, the human
supervisor would be engaged to make the appropriate deci-
sion. As such, this third approach combines the benefits of
predefining certain responses with the flexibility of runtime
decision-making by the human supervisor for situations that
cannot be readily characterized ahead of time.

Expanded Set of Candidate Plans Our approach to ex-
panding the set of candidate plans for a goal g involves the
dynamic creation of a set of proactive plans. Each proactive
plan is a variant of a potentially applicable plan – a relevant
plan for g whose applicability is blocked by one or more
unsatisfied but resolvable preconditions. The body of the
proactive plan incorporates activities from appropriate reso-
lution plans to achieve the blocked preconditions, as well as
the actions from the potentially applicable plan. In this way,
proactive plans extend the set of actions that can be taken by
an agent for a given goal. The following definitions capture
these notions more precisely.

Definition 5 (Resolvable Condition) A condition φ is re-
solvable in a given BDI executor state iff there is some in-
stance pr of a resolution plan such that Cue(pr) = φand for
every φ0 2 Pre(pr), Believed(φ0) holds in the BDI state.

Definition 6 (Potentially Applicable Plan Instance) A
potentially applicable plan instance for a goal g is a relevant
plan instance for g for which not all preconditions are
satisfied but all unsatisfied preconditions are resolvable.

Definition 7 (Proactive Plan) Let p be a potentially appli-
cable plan instance with Cue(p) = g. Let Pre(p) = ΦF [
ΦT where ΦF = fφF

1 ; :::;φ
F
mg are unsatisfied and ΦT =

fφT
1 :::φT

n g are satisfied. Let pr
1; :::p

r
m be resolution plans such

50

Name: Resolve-by-Delay
Cue: (available)
Preconditions: (doing t0)
Body:
(pause t0);f+(available);�(doing t0);+(pending t0)g
Features: DelayCurrent Roles: CurrentTask = t0

Name: Resolve-by-Termination
Cue: (available)
Preconditions: (doing t0)
Body: (kill t0);f+(available);�(doing t0);+(ignored t0)g
Features: DropCurrent Roles: CurrentTask = t0

Figure 2: TIGER Resolution Plans

that Cue(pr
i) = φF

i and for every φ2 Pre(pr
i), Believed(φ)

holds in the current BDI state. The plan p0 defined below is
a proactive plan for g.

� Cue(p0) = g

� Pre(p0) = ΦT [
S

1�i�m Pre(pr
i)

� Body(p0) = fBody(pr
1); : : : ;Body(pr

m)g;Body(p)
� Features(p0) = Features(p)[

S
1�i�m Features(pr

i)

� Roles(p0) = Roles(p)[
S

1�i�m Roles(pr
i) .

Definition 8 (Proactive Plan Set) The proactive plan set
for goal g, denoted by Proactive(g), consists of the proactive
plans that can be constructed from the potentially applicable
plan instances for g and the available resolution plans.

Note that the applicability of a proactive plan within the
current BDI executor loop is guaranteed, as its preconditions
are drawn from a set of known satisfied conditions.

As noted above, cost-benefit considerations should be
taken into account when deciding how to augment the orig-
inal set of applicable plan instances for a current goal with
proactive plans. Thus, in general, only a subset of the set
Proactive(g) of proactive plans for g would be included.

Given the expanded set of candidate plans for applica-
tion to the current goal g, selection among them can be per-
formed in accord with the preference semantics outlined ear-
lier, through application of the guidance ranking function of
Definition 4.

TIGER Conflict Resolution
TIGER supports situated conflict resolution for task man-
agement activities. Within this context, resource contention
arises because each vehicle is limited to use on at most one
task at a time. TIGER includes resolution plans (see Fig-
ure 2) that achieve (available) (i.e., the availability of the
vehicle) by delaying and terminating prior tasks, thereby en-
abling a new task to be executed immediately. The resolu-
tion plan Resolve-by-Delay delays the current task t0 via the
goal (pause t0). The resolution plan Resolve-by-Termination
terminates the current task via the goal (kill t0). The goals
(pause t0) and (kill t0) also perform appropriate clean-up ac-
tions. When an agent is given a new task but (available) is
unsatisfied, it can synthesize two proactive plans (shown in

Name: Proactive-Immediate-Response-Delay
Cue: (task t)
Preconditions: (doing t0)
Body: (pause t0);f+(available);�(doing t0);+(pending t0)g;

f�(available);+(doing t)g;(do t)
Features: Adopt;DelayCurrent Roles: NewTask =
t;CurrentTask = t0

Name: Proactive-Immediate-Response-Termination
Cue: (task t)
Preconditions: (doing t0)
Body: (kill t0);f+(available);�(doing t0);+(ignored t0)g;

f�(available);+(doing t)g
Features: Adopt;DropCurrent Roles: NewTask =
t;CurrentTask = t0

Figure 3: Sample Proactive Plans

Figure 3) from the plan Immediate-Response and the resolu-
tion plans of Figure 2.

For the small number of plans in this example, resolution
rules might seem unnecessary – one can achieve the same
effect by extending the agent’s plan library to include the
proactive plans. However, with a greater number of plans,
the ability to factor out the recovery mechanisms eliminates
duplication and reduces the potential for error. Alternatively,
one could add explicit subgoals of achieving (available) (in
this case) into the base plans. Because the choice of method
for achieving (available) would occur after the choice of the
base plan, this approach would preclude the use of guidance
to select among options.

The cost-benefit analysis used by TIGER for determin-
ing which proactive plans to consider for a given goal con-
sists of the following three conditions. First, resolvability
costs are computed as a simple heuristic related to expected
time remaining for task completion; a threshold is defined
so that nearly complete tasks are not interrupted. Second,
the priority of the new task must be at least as high as that
of the resolvable task. Third, there must be at least one cur-
rent strategy preference rule whose agent context is satisfied
and whose activity specification matches the proactive plan.
In the future, we intend to replace this fixed criteria with a
policy-based approach similar to that described earlier.

Related Work
Most work on conflict within the agents community has fo-
cused on conflicts among agents (e.g., the papers in (Tessier,
Chaudron, & Muller 2000)) rather than on guidance for con-
trolling an agent. Typically, explicit interagent protocols are
used to negotiate solutions to detected conflicts.

Conflicting advice has been considered previously in the
context of advising an automated planning system (Myers
2000b). Detection and resolution techniques in that work
have a markedly different style from the approach outlined
in this paper, being grounded in heuristic search control
methods for plan generation.

The rule-based reasoning community has considered a
similar problem dealing with resolving rule conflicts. In

51

(Chomicki, Lobo, & Naqvi 2000), rule conflicts are resolved
by ignoring triggering events that cause conflicts. The work
of (Jagadish, Mendelzon, & Mumick 1996) uses a declara-
tive set of metarules to constrain how a set of rules should
be executed. Their metacontrol language is grounded in
the specifics of rules and rule firing (e.g., ordering rules,
disabling rules, requiring simultaneous triggering of rules),
which differs substantially from our more expressive and
user-focused guidance language.

The work in (Lupu & Sloman 1999) presents a simple
language for defining policies to manage a distributed set of
objects. Static conflict checking is performed when policies
are defined (rather than at runtime, as in this paper). Their
conflict resolution methods include straightforward concepts
such as explicit priorities and preferring negative to positive
rules; in addition, they incorporate more advanced notions of
specificity over rules and distance metrics to generate overall
precedence relationships.

In (Dignum et al. 2000), preferences over BDI agent be-
haviors are expressed through a multimodal deontic logic for
social norms and obligations. Metalevel norms and obliga-
tions are used to resolve conflicts that arise.

The dialog community has focused on techniques for de-
tecting and resolving conflicts that arise in the performance
of collaborative tasks (e.g., (Qu & Beale 1999)). Techniques
of this type could be used as the basis for interactive resolu-
tion of the conflict types explored in this paper.

Conclusions

Many applications that could benefit from agent technol-
ogy impose the requirement that humans retain control over
agent operations. The guidance framework of (Myers &
Morley 2001; 2002) enables a human supervisor to assert
strategy preference rules to influence agent behavior, thus
providing a powerful mechanism for directing agent opera-
tions. However, it also introduces the possibility for prob-
lems in the event that conflicting guidance is declared.

This paper identified two classes of guidance conflict,
namely plan selection and situated guidance, and showed
how such conflicts transcend the purely filter-based seman-
tics introduced originally for agent guidance. To address
such conflicts, we defined a generalized semantic model
for guidance satisfaction that incorporates the complemen-
tary notions of guidance-derived plan preference relations
and plan option expansion. Within this model, the set of
plan options available to an agent is extended to include
plans that would not normally be considered for execution.
These options can be synthesized dynamically by combining
guidance-relevant plans whose applicability is blocked with
resolution plans that can achieve the blocked applicability
conditions. Accompanying conflict resolution methods for
this model were presented that ensure robustness of agent
operations in the face of conflicting guidance.

Acknowledgments This work was supported by DARPA
under the supervision of Air Force Research Laboratory
contract F30602-98-C-0160.

References
Chomicki, J.; Lobo, J.; and Naqvi, S. 2000. A logic pro-
gramming approach to conflict resolution in policy man-
agement. In Cohn, A. G.; Giunchiglia, F.; and Selman, B.,
eds., Principles of Knowledge Representation and Reason-
ing: Proceedings of the Fifth International Conference (KR
’00). Morgan Kaufmann Publishers.
Dignum, F.; Morley, D.; Sonenberg, E. A.; and Cavedon, L.
2000. Towards socially sophisticated BDI agents. In Pro-
ceedings of the Fourth International Conference on Multi-
Agent Systems (ICMAS’2000).
Georgeff, M. P., and Ingrand, F. F. 1989. Decision-making
in an embedded reasoning system. In Proceedings of the
Eleventh International Joint Conference on Artificial Intel-
ligence.
Jagadish, H. V.; Mendelzon, A. O.; and Mumick, I. S.
1996. Managing conflicts between rules. In Proceedings of
the ACM Symposium on Principles of Database Systems.
Lupu, E., and Sloman, M. 1999. Conflicts in policy-
based distributed systems. IEEE Transactions on Software
Engineering, Special Issue on Inconsistency Management
25(6).
Myers, K. L., and Morley, D. N. 2001. Human directability
of agents. In Proceedings of the First International Con-
ference on Knowledge Capture.
Myers, K. L., and Morley, D. N. 2002. Policy-based agent
directability. In Hexmoor, H.; Falcone, R.; and Castel-
franchi, C., eds., Agent Autonomy. Kluwer Academic Pub-
lishers.
Myers, K. L. 1996. Strategic advice for hierarchical plan-
ners. In Aiello, L. C.; Doyle, J.; and Shapiro, S. C.,
eds., Principles of Knowledge Representation and Reason-
ing: Proceedings of the Fifth International Conference (KR
’96). Morgan Kaufmann Publishers.
Myers, K. L. 2000a. Domain metatheories: Enabling user-
centric planning. In Proceedings of the AAAI-2000 Work-
shop on Representational Issues for Real-World Planning
Systems.
Myers, K. L. 2000b. Planning with conflicting advice.
In Proceedings of the Fifth International Conference on AI
Planning Systems.
Qu, Y., and Beale, S. 1999. A constraint-based model for
cooperative response generation in information dialogues.
In Proceedings of the Sixteenth National Conference on Ar-
tificial Intelligence (AAAI-99).
Rao, A. S., and Georgeff, M. P. 1995. BDI agents: From
theory to practice. In Proceedings of the International Con-
ference on Multi-Agent Systems (ICMAS-95).
Tessier, C.; Chaudron, L.; and Muller, H.-J., eds. 2000.
Conflicting Agents. Kluwer Academic Press.
Wilkins, D. E., and Myers, K. L. 1995. A common knowl-
edge representation for plan generation and reactive execu-
tion. Journal of Logic and Computation 5(6).

52

